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About me?

• I did Phd & post-doc at MISU on turbulence 
and Arctic climate 

• Then moved to the Max Planck Institute in  
Hamburg, Germany (2009-2018) 

• Got involved in climate model development 
and contributed to CMIP5 and CMIP6 

• Wrote several papers about the developments 
with a focus on model tuning 

• Also I participated in the IPCC AR6 report as 
expert on climate sensitivity 

et al., 2012], while others adjust the ocean surface albedo
[Hourdin et al., 2012] or scale the natural aerosol cli-
matology to achieve radiation balance [Voldoire et al.,
2012]. Tuning cloud parameters partly masks the defi-
ciencies in the simulated climate, as there is considerable
uncertainty in the representation of cloud processes. But
just like adding flux-corrections, adjusting cloud para-
meters involves a process of error compensation, as it is
well appreciated that climate models poorly represent
clouds and convective processes. Tuning aims at bal-
ancing the Earth’s energy budget by adjusting a deficient
representation of clouds, without necessarily aiming at
improving the latter.

[5] Arguably, the most basic physical property that we
expect global climate models to predict is how the global
mean surface air temperature varies naturally, and
responds to changes in atmospheric composition and
solar insolation. We usually focus on temperature anom-
alies, rather than the absolute temperature that the
models produce, and for many purposes this is sufficient.
Figure 1 instead shows the absolute temperature evolu-
tion from 1850 till present in realizations of the coupled
climate models obtained from the Coupled Model
Intercomparison Project phase 3 (CMIP3) [Meehl et al.,
2007] and phase 5 (CMIP5) [Taylor et al., 2012] multi-
model datasets available to us at the time of writ ing,
along with two temperature records reconstructed from

observations [Brohan et al., 2006]. There is considerable
coherence between the model realizations and the obser-
vations; models are generally able to reproduce the
observed 20th century warming of about 0.7 K, and
details such as the years of cooling following the volcanic
eruptions, e.g., Krakatau (1883) and Pinatubo (1991), are
found in both the observed record and most of the model
realizations.

[6] Yet, the span between the coldest and the warmest
model is almost 3 K, distributed equally far above and
below the best observational estimates, while the major-
ity of models are cold-biased. Although the inter-model
span is only one percent relative to absolute zero, that
argument fails to be reassuring. Relative to the 20th
century warming the span is a factor four larger, while it
is about the same as our best estimate of the climate
response to a doubling of CO2, and about half the
difference between the last glacial maximum and pre-
sent. To parameterized processes that are non-linearly
dependent on the absolute temperature it is a prerequis-
ite that they be exposed to realistic temperatures for
them to act as intended. Prime examples are processes
involving phase transitions of water: Evaporation and
precipitation depend non-linearly on temperature
through the Clausius-Clapeyron relation, while snow,
sea-ice, tundra and glacier melt are critical to freezing
temperatures in certain regions. The models in CMIP3

Figure 1. Absolute temperatures from climate model historical realizations and future scenarios. Black line is the
HadCRUT3v blended land and ocean temperature dataset and red line is CRUTEM3v land-only temperatures
[Brohan et al., 2006]. Blue lines are three historical realizations, while orange, green and brown are future RCP-
scenario realizations with the MPI-ESM-LR model, and light gray lines are the first historical realization from each
model found in the CMIP3 dataset [Meehl et al., 2007] and dark gray lines the corresponding CMIP5 historical
realizations [Taylor et al., 2012]. Some model realizations were started later than 1850. The estimated Last Glacial
Maximum temperature range of 4–7 K below present is from Intergovernmental Panel on Climate Change [2007].
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cover and less atmospheric water vapor, as more water is
deposited directly from deep convective systems to the
surface. By this parameter, both TOA net shortwave
and net longwave fluxes both increase in magnitude,
while approximately maintaining TOA radiation bal-
ance. This makes the parameter useful for adjusting the
level of the TOA net shortwave and longwave fluxes.

2.3. Controlling the Global Mean Surface Temperature
and Climate Drift

[26] A particular problem when tuning a coupled
climate model is that it takes thousands of years for the
deep ocean to be equilibrated. In many cases, it is not
computationally feasible to redo such long simulations
several times. Therefore it is valuable to estimate the
equilibrium temperature with good precision long before
equilibrium is actually reached. Ideally, one would like to
think that if we tune our model to have a TOA radiation
imbalance that closely matches the observed ocean heat
uptake in simulations where SST’s are prescribed to the
present-day observed state with all relevant forcings
applied, then the coupled climate model attains a global
mean temperature in reasonable agreement with the
observed. Recent studies suggest that the ocean heat
uptake is of 0.5–0.7 Wm22 when averaged over the

Earth’s total surface area, indicating that the present-
day climate is out of balance [Hansen et al., 2011; Stevens
and Schwartz, 2012]. There are at least three reasons why
abiding to this ideal need not be successful:

[27] 1. Climate models may not exactly conserve
energy.

[28] 2. The climate sensitivity of the model to the
various forcings may not match the real cli-
mate system, and the forcings themselves may
be erroneous.

[29] 3. Local SST biases in the coupled model may
influence the atmospheric state, for example
cloudiness, and thereby shift the global mean
temperature.

[30] To investigate whether climate models leak
energy, Figure 4 shows the relation between TOA
energy imbalance and global mean temperature for
MPI-ESM-LR (blue) and the CMIP3 (light gray) and
CMIP5 (gray) multi-model ensembles from control
simulations of pre-industrial climate. Climate drift is
indicated by the trails, and most models have fairly low
drift during the typically 500-year long control runs.
Some models drift considerably, up to 1 K. Models will
relax slowly towards their equilibrium state approxi-
mately along slopes corresponding to their climate

Figure 4. Drift in global mean temperature and radiation imbalance for pre-industrial control simulations. Blue is
a 1000-year control simulation with MPI-ESM-LR, while light gray symbols are simulations from the CMIP3,
including the predecessor ECHAM5/MPI-OM, and gray from the CMIP5 model ensembles. A large circle is the
mean of the last 50 years of each simulation, while the trailing lines are 50-year running means for the entire
simulations. Our target pre-industrial temperature range is marked as 13.7¡0.2 C. The blue and red arrows show
the approximate slopes that models with a climate sensitivity to a CO2-doubling of 2 K and 4.5 K will follow. Note
that the CMIP5 models displayed here are not exactly the same as those in Figure 1.
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Figure 7 Evolution of temperature versus radiation balance in the two longest coupled simulations. Shown is the monthly mean 
temperature versus radiation balance for the two longer simulations and observations. Shown as thin orange lines are the 20 
individual cycles of observations. Dashed orange lines are means of the observations, and as described within the figure we estimate 
the equilibrium temperature of dpp0029/33 from the drift between the two simulated years.

Figure 8 Two 10 year long simulations with ICON-Sapphire at 10 km resolution, as well as observations that are also shown in 
Figure 7. The ngc2012 simulation drifts to colder temperatures with time.

Journal of Advances in Modeling Earth Systems 10.1029/2019MS002037

Figure 5. Comparison of the MPI-ESM1.1-LR 100-member ensemble and the MPI-ESM1.2-LR 10-member ensemble
historical experiments with observed surface temperature. Left is the temporal evolution of global mean temperature
with a reference period of 1850–1899. Right panel is showing the distribution of modeled centennial warming defined
as 1976–2005 relative to 1850–1899.

we accomplished this goal Figure 5 provides a comparison with observations. Shown is 100 historical simu-
lations using the MPI-ESM1.1-LR model, also referred to as the grand ensemble (Maher et al., 2019), along
with 10 simulations using the MPI-ESM1.2-LR model. Both model versions are based on the ECHAM6.3
atmosphere model, share the same ECS, and they mainly differ in terms of their historical forcing which are
from CMIP5 and CMIP6, respectively. Here the main difference is that MPI-ESM1.2-LR uses the recently
developed simple-plume aerosol parameterization (Fiedler et al., 2017; Stevens et al., 2017).

The runs are compared with the Cowtan and Way (2014) in-filled HadCRUT data set. The in-filling proce-
dure of unobserved regions increases the global warming by about 0.1 K compared to the original data set. It
is seen that the ensemble means of the two model versions differ fairly little, with slightly less overall warm-
ing in MPI-ESM1.2-LR, and that on average they track the long term observed global mean temperature very
well (right panel). Also, the observed temperature is only occasionally outside the range spanned by the 100
individual ensemble members, as is to be expected if the model exhibits an unbiased mean response and a
reasonable amount of internal variability. Thus, the tuned model provides an excellent representation of the
observed global warming.

There is, however, many ways in which a model can match the observed centennial warming, foremost by
compensating a high climate sensitivity with strong aerosol cooling (Golaz et al., 2013, 2019; Kiehl, 2007).
It is possible to estimate the transient warming (T) based on bulk model properties as

T ≈ −F
! − "#

, (2)

where F is the change in total forcing over the period of interest, " the ocean heat uptake efficacy (representa-
tive of pattern effects), and # is the deep ocean heat uptake coefficient. To arrive at this expression one makes
the zero-layer approximation to the two-layer Winton-Held model (Gregory & Forster, 2008; Geoffroy et al.,
2013; Held et al., 2010; Jiménez-de-la-Cuesta & Mauritsen, 2019; Winton et al., 2010). From this equation
we see that as climate sensitivity increases, meaning the negative feedback parameter ! decreases in mag-
nitude, the transient temperature response increases. This may be compensated by larger deep ocean heat
uptake, stronger pattern effects, or a weaker forcing. The former two factors are difficult to control, whereas
a weaker total forcing can often be achieved through enhanced aerosol indirect effects.

We devise the two-layer model to investigate how a historical simulation with a 7 K climate sensitivity model
might have turned out. We use a version with parameters determined for MPI-ESM1.2-LR representing both
the pattern effect and state-dependent feedback,

C dT
dt = F + !T + aT2 − "#(T − Td)

Cd
dTd
dt = #(T − Td),

(3)

where F is a radiative forcing, T and Td the temperatures of the upper and deep layers with respect to an
unforced steady state, C and Cd the heat capacities of the two layers, ! = −1.65 W·m−2·K−1 is the feedback
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Bjerknes 1904, Richardson 1922, Charney et al. 1950, Rossby 1954

Equations of motion for the 
atmosphere, energy and 

mass conservation:
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Bjerknes’ and Richardson’s model
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Longitude from Greenwich

' An -arrangement of meteorological stations designed to fit with the chief mechanical properties of the

atiup?pfier4. ."Other considerations have been here disregarded. Pressure to be observed at the centre
of 'each 'sh'aded" chequer, velocity at the centre of each white chequer. The numerical coordinates refer to

these centres as also do the names, although as to the latter there may be errors of 5 or 10 km.
The word "with" in "St Leonards with Dieppe" etc. is intended to suggest an interpolation between
observations made at the two places. See page 9, and Chapters 3 and 7. Contrast the existing arrange-
ment shown on p. 184.

Bjerknes 1904, Richardson 1922, Charney et al. 1950, Rossby 1954

• Use fundamental equations of 
motion to predict weather


• Richardson tried to solve them by 
hand, Charney later managed this 
with the advent of computers


• Carl Gustaf Rossby launched the 
worlds first operational forecasts 
in 1954


• The atmosphere models were 
applied to climate problems in the 
1960s (Smagorinski, Manabe)



Kotamarthi et al. (2021)
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Same principle in modern climate models

The atmosphere part of a modern climate model 
is not too different from a weather model 

You can say that they simulate the weather 
according to an approximation of the laws of 
physics



Snap shot of clouds

100 km resolution2.5 km resolution



Illustration

1990

2001

1996

2007

• Computational power limits the number of grid 
points and therefore grid spacing


• Doubling resolution increases cost 8 times


• Unresolved processes must be parameterised

The drive to decarbonize the global 
economy is usually justified by appeal-
ing to the precautionary principle: 

reducing emissions is warranted because the 
risk of doing nothing is unacceptably high. 
By emphasizing the idea of risk, this framing 
recognizes uncertainty in the magnitude and 
timing of global warming. 

This uncertainty is substantial. If warming 
occurs at the upper end of the range projected 
in the Intergovernmental Panel on Climate 
Change (IPCC) Fifth Assessment Report1, 
then unmitigated climate change will prob-
ably prove disastrous worldwide, and rapid 
global decarbonization is paramount. If 
warming occurs at the lower end of this range, 
then decarbonization could proceed more 
slowly and some societies’ resources may be 
better focused on local adaptation measures. 

Reducing these uncertainties substantially 
will take a new generation of global climate 
simulators capable of resolving finer details, 

including cloud systems and ocean eddies. 
The technical challenges will be great, requir-
ing dedicated supercomputers faster than the 
best today. Greater international collabora-
tion will be needed to pool skills and funds. 

Against the cost of mitigating climate 
change — conceivably trillions of dollars 
— investing, say, one quarter of the cost of 
the Large Hadron Collider (whose annual 
budget is just under US$1 billion) to reduce 
uncertainty in climate-change projections is 
surely warranted. Such an investment will also 
improve regional estimates of climate change 
— needed for adaptation strategies — and our 
ability to forecast extreme weather.

GRAND CHALLENGES
The greatest uncertainty in climate projec-
tions is the role of the water cycle — cloud 
formation in particular — in amplifying or 
damping the warming effect of CO2 in the 
atmosphere2. Clouds are influenced strongly 

by two types of circulation in the atmos-
phere: mid-latitude, low-pressure weather 
systems that transport heat from the tropics 
to the poles; and convection, which conveys 
heat and moisture vertically. 

Global climate simulators calculate the 
evolution of variables such as temperature, 
humidity, wind and ocean currents over a 
grid of cells. The horizontal size of cells in 
current global climate models is roughly 
100 kilometres. This resolution is fine 
enough to simulate mid-latitude weather 
systems, which stretch for thousands of kilo-
metres. But it is insufficiently fine to describe 
convective cloud systems that rarely extend 
beyond a few tens of kilometres. 

Simplified formulae known as ‘param-
eterizations’ are used to approximate the 
average effects of convective clouds or 
other small-scale processes within a cell. 
These approximations are the main source 
of errors and uncertainties in climate 

Build high-resolution 
global climate models

International supercomputing centres dedicated to climate prediction 
are needed to reduce uncertainties in global warming, says Tim Palmer.

Local effects such as thunderstorms, crucial for predicting global warming, could be simulated by fine-scale global climate models.
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Resolved Flow: 
~Navier-Stokes  

equations

Parameterisations: 
Radiation 

Cloud microphysics 
Turbulence 

Land processes 
Convection 

Gravity waves

Parameteriserade processer in ECMWFs model 

It is not all fundamental!
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The ocean is simulated in more or less the same way

From a 10 km resolution simulation



Model setups

Atmosphere-only:  

• Simulates the atmosphere and land processes 

• Sea surface temperatures and sea ice are prescribed 

Coupled model: 

• Ocean currents, temperatures, salinity etc. is simulated 

• Connected to the atmosphere through a coupler software 

Earth system model (ESM): 

• Poorly defined category 

• Usually simulates at least a carbon cycle 

• Can therefore be driven by CO2 emissions rather than concentrations 

[ Mixed-layer model ]

C
om

pl
ex

ity



Model setupsJournal of Advances in Modeling Earth Systems 10.1029/2018MS001400

Figure 1. Schematic overview of the components of MPI-ESM1.2 and how these are coupled. The atmosphere
ECHAM6.3 is directly coupled with the land surface model JSBACH3.2, whereas the ocean biogeochemistry model
HAMOCC6 is directly coupled to the ocean dynamic model MPIOM1.6. These two major model component blocks are
in turn coupled through the OASIS3-MCT coupler software.

In the following, we will describe the major configurations of MPI-ESM1.2 in terms of resolutions in the
atmosphere and ocean (section 2). Then we describe the changes made to the atmosphere (section 3), most
of which where introduced already in the intermediate MPI-ESM1.1 grand ensemble model. Changes made
to the ocean component are in section 4, the ocean biogeochemistry in section 5, the land component in
section 6, and technical improvements in section 7. We then inspect some properties of the coupled climate
model that we found particularly interesting in section 8.

2. Model Configurations
The MPI-ESM1.2 model consists of four model components and a coupler, which are connected as it
was done in the predecessor MPI-ESM (Figure 1, Giorgetta et al., 2013). The ocean dynamical model,
MPIOM1.6, directly advects tracers of the ocean biogeochemistry model, HAMOCC6. The atmosphere
model, ECHAM6.3, is directly coupled to the land model, JSBACH3.2, through surface exchange of mass,
momentum, and heat. These two major model blocks are then coupled via the OASIS3-MCT coupler (Craig
et al., 2017). The individual model components can also be operated in stand-alone modes.

The model is applied to a number of scientific and practical problems, each of which offer their own chal-
lenges in terms of representing processes or phenomena and in terms of their computational demands,
which is by far mostly controlled by horizontal resolution in the atmosphere and ocean. To this end,
five different coupled model configurations were created (the coarse resolution CR, low resolution LR,
higher resolution HR, ocean-eddy resolving ER, and very high resolution XR; see Table 1), which span
more than a factor thousand in computational cost. As such, the different model configurations have been
developed with varying purposes, goals, and demands, and they have been finalized at disparate instances
during the past years. Also, therefore, some updates and bug fixes are only included in the latest release of
MPI-ESM1.2-LR, and in general, any comparison across the configurations should carefully consider the
differences that are not limited to resolution.

For several generations of climate models developed at the Max Planck Institute for Meteorology, the
workhorse atmospheric horizontal resolution has featured a spectral truncation at T63 or approximately
200-km grid spacing, corresponding to that of MPI-ESM1.2-LR (Table 1); a fact that is sometimes viewed
as a lack of progress. However, with modern computers it is possible to run this configuration with 45–85
model years per physical day with fairly small computational cost (section 7), a fact that opens up new pos-
sibilities to experiment which were previously out of reach, for example, conduct large ensembles or run
long simulations (section 8.3). We find that scientific users of the model experiment more freely using the
MPI-ESM1.2-LR model, when not having to worry much about the computing time budgets or data storage.
Further, model configurations that are well known and characterized are usually easier to learn from.

The higher-resolution MPI-ESM1.2-HR is configured with grid spacings of 40 km in the ocean and 100 km
in the atmosphere with twice as many atmospheric vertical levels, which together results in it being com-
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What is model intercomparison project, aka *MIP?

Essentially a *MIP consists of: 

• Ideally, a good idea! 

• Modellers wanting to participate with their models 

• An experimental protocol and a description of the desired output 

• A facility to share the output 

Today, these elements have become a lot easier and faster to achieve, so you 
will see more and more autonomous MIPs arise



What is CMIP/AMIP

The first climate models were created in the 1960’s and with time more and more 
interest in them emerged. 

Two official MIPs took off in the 1990’s: 

• The Atmosphere Model Intercomparison Project (AMIP, Gates et al. 1999) 

• The Coupled Model Intercomparison Project (CMIP, Meehl et al. 2000) 

Came about as a bottom-up process, as modellers saw a need for and a scientific 
value in being able to compare their models with others. 

In part they were inspired by successful model inter-comparisons led by Robert 
Cess looking at climate sensitivity and feedbacks in models (Cess et al. 1989, 1990, 
1991).



What is CMIP/AMIP

The first climate models were created in the 1960’s and with time more and more 
interest emerged 

Two MIPs took off in the 1990’s following several successful model inter 
comparisons led by Robert Cess (Cess et al. 1989, 1990, 1991) looking at climate 
sensitivity and feedbacks in models: 

• The Atmosphere Model Intercomparison Project (AMIP, Gates et al. 1999) 

• The Coupled Model Intercomparison Project (CMIP, Meehl et al. 2000) 

Came about as a bottom-up process, as modellers saw a need for and a scientific 
value in being able to compare their models with others.

Still today, CMIP is an independent activity that is not 
controlled by e.g. the United Nations Intergovernmental 

Panel on Climate Change (IPCC), unlike what many 
people think  

Please don’t call them “the IPCC models”



CMIP cycles

CMIP1: control simulations, flux corrections 

CMIP2: gradually increasing CO2 at 1 percent 
per year to probe transient climate response 
(TCR) 

CMIP3: historical and future scenarios, also 
included AMIP for evaluation, mixed-layer 
ocean models for climate sensitivity, and first 
open access to the public! 

CMIP5: adds abrupt 4xCO2 and other 
idealised experiments, and also decadal 
predictions and carbon cycle models (ESMs) 

CMIP6: more of everything, and a more 
distributed approach with endorsed sub-MIPs 
focused on specific questions



Experiments

annual means and clearly amplified in the coupled his-
torical simulation compared to the amip simulation
(Figures 4c and 4d).
5.1.3. Net Primary Production and Surface Albedo

[40] Figures 4e and 4f show differences between the
uncoupled amip and the coupled historical simulations
for the net primary production and the surface albedo,
respectively, in contrast to Figures 4a–4d showing
biases compared to observations.

[41] There are substantial differences in the net pri-
mary production in the tropical Atlantic sector
between the coupled and uncoupled model version.
These can be at least partly explained by the rainfall
differences between the uncoupled and the coupled
model. For example, the coupled historical simulation
shows less rainfall over northeast Brazil than the
uncoupled amip simulation (compare Figures 4c and
4d). This reduced rainfall is associated with a weaker
net primary production over this area. Similar argu-
ments hold for the southern African continent. These
changes in the net primary production are impacting
the surface albedo especially over these two regions.
The reduced/enhanced primary production is associ-
ated with an enhanced/reduced surface albedo linking
the biosphere in these regions to the physical world.
It is evident that the largest surface albedo differences
between the coupled and uncoupled simulations occur
in the northern hemispheric polar regions, where the
surface albedo is substantially higher in the coupled
simulations.
5.1.4. Ocean Heat Uptake

[42] Observations and simulations show a substantial
increase in ocean heat content since approximately the
second half of the 20th century (Figure 3, bottom). The

simulated increase is clearly outside of the two-standard
deviations of the preindustrial control simulation indi-
cated by the respective shading. Therefore, the modeled
ocean heat uptake cannot be explained without external
forcing factors. Compared to the observational data
[Levitus et al., 2012] MPI-ESM overestimates the
ocean-heat uptake in recent decades substantially. By
the end of the historical simulations in 2005, the simu-
lated ensemble mean anomaly for the depth-range 0–
2000 m is 17.9 6 0.5 3 1022 J, compared to 12.0 6 0.3 3
1022 J in the estimate by Levitus et al. [2012]. Note, how-
ever, that the range given for the observations does not
include uncertainties due to applied methods, such as
different interpolation and error correction. The simu-
lated growth rates for the last 15 years are, for example,
closer to the estimates given by Lyman et al. [2010] (not
shown). On the other hand, an overestimation of ocean
heat uptake appears to be a common feature in CMIP3
and CMIP5 models. Forest et al. [2008] and Kuhlbrodt
and Gregory [2012] come to the conclusion that the
models, including MPI-ESM, exaggerate vertical heat-
transfer processes, probably due to generally weaker
stratification. Comparing the simulated heat-uptake
curves for the 0–2000 m and the 700–2000 m ranges,
reveals that most of the mismatch between observations
and simulations stems from the upper 700 m of the
ocean. Similar to some of the CMIP3 models in Kuhl-
brodt and Gregory’s [2012] study (cf., their Figure 2c),
the model overestimates warming in the upper 700 m
while it reproduces the actual surface evolution rela-
tively well (not shown). Comparing details of the
regionally varying heat uptake in our model compared
to observations is beyond the scope of this paper. Kuhl-
brodt and Gregory [2012] points to the fact that one of

Figure 6. Overview of simulations performed with MPI-ESM-LR. Shown is annual mean globally averaged sur-
face air temperature. Three realizations are shown for the historical experiment and for the RCP-projections up
until 2100. Also shown are estimates of transient climate response at doubled and quadrupled CO2 concentration
in the 1pctCO2 simulation. Two regression-based estimates of equilibrium climate sensitivity are shown for the
abrupt4xCO2 experiment, and likewise for the rcp45 and rcp85 experiments based on regression during periods of
constant forcing. Shaded areas are estimates of committed warming to be explained in the text.
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• Pre-industrial control 

• Historical simulation 

• Future scenarios 

• Idealised forcing experiments



Control simulation

CMIP1 models only conducted a control 
simulation: 

• a long run with constant boundary 
conditions such as CO2 and other 
greenhouse gases 

Ideally, a control simulation will be stable in 
time, but this was difficult to achieve 

Some CMIP1 models also relied on flux-
corrections, which is a method to stabilise 
climate and minimise biases, but this is no 
longer used

314 Vol. 81, No. 2, February 2000

forts. The next year under the first phase of CMIP
(CMIP1), model data from unforced climate from 21
global coupled atmosphere–ocean–ice models were
archived at the U.S. Department of Energy Program

for Climate Model Diagnosis and Intercomparison
(PCMDI) at the Lawrence Livermore National Labo-
ratory (Table 1). This set represented virtually every
global coupled model in existence at the time (Meehl

*BMRC none 105 no std dev or ocean data

*CCCMA heat, water 150

*CCSR heat, water 40

*CERFACS none 40

COLA none 50

*CSIRO heat, water, momentum 100

*DOE PCM none 300

ECHAM1+LSG heat, water, momentum 960 temperature time series data
only

*ECHAM3+LSG heat, water, momentum 1000 no flux-correction fields

ECHAM4+OPYC3 heat, water (ann. mean) 240

*GFDL heat, water 1000

GISS (Miller) none 89

*GISS (Russell) none 98 no decadal std dev or
barotropic stream function

*IAP/LASG sea surface salinity 50
restored to obs

*LMD/IPSL none 24 no decadal std dev

*MRI heat, water 100 no ocean heat transports

*NCAR (CSM) none 300

*NCAR (Wash. & Meehl) none 100

*NRL sea ice prescribed to obs 36

*UKMO (HadCM2) heat, water 1085

*UKMO (HadCM3) none 80 in CMIP2 only

TABLE 1. Model participation in CMIP1. Asterisks denote those models also participating in CMIP2.

Model Flux correction Run length (yr) Comments



Biases and drifts

Something you will have to deal with is that 
models have both biases and drifts 

Bias: a constant off set, e.g. the temperature is 
too high or too low all the time 

Drift: the system is somehow out of balance, 
such that the climate changes even if the 
boundary conditions don’t change 

Modelling centers will try to reduce both these 
issues, but are successful to different extents 

Make sure to check the influence on your results!

Climate drift can, in principle, be alleviated via long
model integrations. Such integrations are feasible and
routinely done for low-resolution models (e.g., Phipps
et al. 2011). However, to perform such simulations at
the higher resolution used for climate projections is at
present computationally prohibitive. Flux adjustments
have also been widely used in the past whereby pre-
determined heat and/or freshwater adjustments are made
over the duration of long climate simulations (Sausen
et al. 1988). Such adjustments are a pragmatic partial
solution to drift; however, they are also inherently non-
physical. It is therefore hard to envisage a satisfactory
near-term solution to the issue of climate drift. As the
models become more realistic, however, we would expect
the problem to become less significant. This is already
apparent. In the Coupled Model Intercomparison Project
phase 2 (CMIP2), 10 of the 17 models employed ad hoc
and nonphysical flux adjustments to reduce climate drift to
maintain a relatively stable simulated climate state
(Houghton et al. 2001; Räisänen 2001). Even with flux
adjustment, however, drift was still evident (Covey
et al. 2006). In CMIP3, only 6 of the 24 contributing
models used flux adjustments. Yet despite the removal of
flux adjustment the replication of the observed climate
has improved considerably (Reichler and Kim 2008). This
abandonment of flux adjustment can be partly attributed
to improved and more physically consistent model pa-
rameterizations, increased resolution, and dynamical
cores in the updated models. The shift was driven by
a general discomfort with the use of physically untenable
techniques. Previous work has demonstrated, for exam-
ple, that the details of flux adjustment can have major

impacts on transient simulations (Neelin and Dijkstra
1995; Tziperman 2000). Tziperman (2000), for instance,
show that two equally plausible flux adjustment formu-
lations can lead to a recovery or a sustained slowdown
of the thermohaline circulation after an initial warming
induced slowdown.

The quantification of drift requires the examination of
control simulations in which forcing terms (e.g., solar
irradiance, greenhouse gases) are maintained at fixed
levels. Any long-term trend in these control simulations
will be due to climate drift (and possibly low-frequency
variability). Forced simulations that are initialized from
these control simulations will therefore also contain a
trend component that is spurious and associated with
drift. In the CMIP3 models the twentieth-century hind-
cast simulations (20C3M, which extends from the late
nineteenth century to ;2000) are initialized from a
long preindustrial control simulation under constant
late nineteenth-century boundary conditions. As the
control simulation is, for most models, integrated beyond
this branching point, a period of temporal overlap is
available, which can in principle be used to identify, and
where necessary remove, the drift from the forced simu-
lation (Fig. 1). However, given a concurrent record of
forced and control simulations (which is not guaranteed
for all model/variable combinations in the CMIP3 re-
pository) three interrelated complications exist. First,
as with the identification of a forced trend, identifying
the drift is hampered by inherent natural variability. When
short time periods are analyzed or low-frequency natural
variability exists, aliasing can produce spurious trends
unrelated to either climate drift or external forcing.

FIG. 1. Schematic of the temporal evolution of a simulated state variable (e.g., global tem-
perature) during a preindustrial control simulation and subsequent simulations of the twentieth
century and future scenarios.
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et al., 2012], while others adjust the ocean surface albedo
[Hourdin et al., 2012] or scale the natural aerosol cli-
matology to achieve radiation balance [Voldoire et al.,
2012]. Tuning cloud parameters partly masks the defi-
ciencies in the simulated climate, as there is considerable
uncertainty in the representation of cloud processes. But
just like adding flux-corrections, adjusting cloud para-
meters involves a process of error compensation, as it is
well appreciated that climate models poorly represent
clouds and convective processes. Tuning aims at bal-
ancing the Earth’s energy budget by adjusting a deficient
representation of clouds, without necessarily aiming at
improving the latter.

[5] Arguably, the most basic physical property that we
expect global climate models to predict is how the global
mean surface air temperature varies naturally, and
responds to changes in atmospheric composition and
solar insolation. We usually focus on temperature anom-
alies, rather than the absolute temperature that the
models produce, and for many purposes this is sufficient.
Figure 1 instead shows the absolute temperature evolu-
tion from 1850 till present in realizations of the coupled
climate models obtained from the Coupled Model
Intercomparison Project phase 3 (CMIP3) [Meehl et al.,
2007] and phase 5 (CMIP5) [Taylor et al., 2012] multi-
model datasets available to us at the time of writ ing,
along with two temperature records reconstructed from

observations [Brohan et al., 2006]. There is considerable
coherence between the model realizations and the obser-
vations; models are generally able to reproduce the
observed 20th century warming of about 0.7 K, and
details such as the years of cooling following the volcanic
eruptions, e.g., Krakatau (1883) and Pinatubo (1991), are
found in both the observed record and most of the model
realizations.

[6] Yet, the span between the coldest and the warmest
model is almost 3 K, distributed equally far above and
below the best observational estimates, while the major-
ity of models are cold-biased. Although the inter-model
span is only one percent relative to absolute zero, that
argument fails to be reassuring. Relative to the 20th
century warming the span is a factor four larger, while it
is about the same as our best estimate of the climate
response to a doubling of CO2, and about half the
difference between the last glacial maximum and pre-
sent. To parameterized processes that are non-linearly
dependent on the absolute temperature it is a prerequis-
ite that they be exposed to realistic temperatures for
them to act as intended. Prime examples are processes
involving phase transitions of water: Evaporation and
precipitation depend non-linearly on temperature
through the Clausius-Clapeyron relation, while snow,
sea-ice, tundra and glacier melt are critical to freezing
temperatures in certain regions. The models in CMIP3

Figure 1. Absolute temperatures from climate model historical realizations and future scenarios. Black line is the
HadCRUT3v blended land and ocean temperature dataset and red line is CRUTEM3v land-only temperatures
[Brohan et al., 2006]. Blue lines are three historical realizations, while orange, green and brown are future RCP-
scenario realizations with the MPI-ESM-LR model, and light gray lines are the first historical realization from each
model found in the CMIP3 dataset [Meehl et al., 2007] and dark gray lines the corresponding CMIP5 historical
realizations [Taylor et al., 2012]. Some model realizations were started later than 1850. The estimated Last Glacial
Maximum temperature range of 4–7 K below present is from Intergovernmental Panel on Climate Change [2007].
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CMIP2: Transient climate response (TCR)

IPCC (2001)

The simplest kind of scenario is one where 
the CO2 concentration increases gradually 

Here at 1 percent per year, such that after 
70 years the concentration is doubled 

The transient climate response (TCR) is then 
usually taken as the mean of years 60-80



CMIP3/5/6 equilibrium climate sensitivity (ECS) 

TCR: the transient warming to gradual 
increase of CO2 to doubled concentration  

ECS: the long term global warming response 
to a doubling of CO2 over pre-industrial 
levels 

TCR < ECS 

In CMIP3 and earlier, ECS of a model was 
estimated with a mixed-layer ocean model 
that is about 50 m deep 

Such a model can be run to equilibrium in a 
few decades
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Fig. 6. Time variation of the global mean water temperature of the mixed layer ocean from I x CO2 and 4 x CO2 experi- 

ments. A l-year running mean operator is applied to both curves. 

atmosphere mixed layer ocean model toward a stable equilib- land and off the east coast of the Asian continent, the simu- 
rium climate is faster than the corresponding approach of the lated temperature is much too low in both February and Au- 
actual joint ocean-atmosphere system, in which the heat ex- gust, probably caused by a lack of oceanic heat transport in 
change between the mixed layer and the deeper layers of the the mixed layer ocean model. This is consistent with an over- 
ocean takes place. As was discussed by Thompson and $chnei- abundance of sea ice in these regions during winter. On the 
der [1979] and in the recent report of the National Academy of other hand, the surface air is too warm by several degrees 
Sciences [1979], this heat exchange substantially delays the re- 
sponse of the climate to an increase in the CO• concentration 
in the atmosphere. 

4. SIMULATED CLIMATE 

This section briefly describes the seasonal variation of eli- 

throughout the year near the Antarctic continent owing partly 
to unrealistically low planetary albedo in this region of the 
model. (The prescribed cloud amount turned out to be sub- 
stantially smaller than the observed in this region of the 
model and accounts for this low planetary albedo.) Over the 
model continents, the surface temperature is too high in 

mate, which is obtained from the standard 1 x CO• experi-, northern Europe in August, whereas it is too low there in Feb- 
ment. Before discussing the comparison between the 1 x CO• ruary. 
and 4 x CO• experiment as planned in the preceding section, Despite the failures of the simulation identified above, it is 
it is essential to confirm that the seasonal climate variation, very encouraging that the model reproduces the geographical 
which emerges from the 1 x CO2 experiment, is realistic distribution of surface air temperature reasonably well. By 
enough to justify a CO2 sensitivity study. comparing the position of the 275 K isotherm on the com- 

Figure 7 compares the geographical distributions of puted February maps against the observed isotherm position, 
monthly mean surface air temperature in February and Au- 
gust with the observed distributions compiled by Crutcher and 
Meserve [1970] and Taljaad et al. [1969]. On the basis of this 
comparison, one can identify some of the unrealistic features 
in the simulated climate. For example, the computed distribu- 
tion of the air temperature indicates an equatorial belt of 
maximum temperature in the eastern Pacific. This is in dis- 
agreement with the observed distribution which contains the 
equatorial minimum of sea surface temperature caused by the 
upwelling of cold water. Also, in the regions east of Green- 

one can see that the longitudinal variation of the isotherm is 
simulated very well. The latitudinal placement of the isotherm 
also compares favorably with the observed position. Since the 
maps of computed surface air temperature for both February 
and August are very similar to the observed maps, one would 
expect that the geographical distribution of the seasonal varia- 
tion of the surface air temperature also would be reproduced. 

This is evident in Figure 8 which illustrates the geographi- 
cal distributions of surface air temperature difference between 
August and February for both the model and the actual atmo- 

Manabe and Stouffer 1980



CMIP3/5/6 equilibrium climate sensitivity (ECS) 

In CMIP5, and later, instead coupled models 
were being used 

These will take about 4-6000 years to 
equilibrate due to the deep oceans heat 
capacity 

Instead an abrupt increase in CO2 is applied 
and extrapolation is used according to the 
Gregory method (Gregory et al. 2004)

strength or temperature change. Indeed, when we apply
a forcing of 2xCO2 to MPI-ESM-LR the slopes before
and after year 20 are statistically indistinguishable from
those of the 4xCO2 run (Figure 5 and Table 2),
although it should be noted that internal variability
introduces additional statistical uncertainty when the
model is forced weakly. Here again, the average of a 30
year long experiment with 2xCO2 and prescribed SST
(open symbol) falls on the first regression line and
therefore supports the steeper initial slope of the
coupled run.

[19] What matters in the end, however, is the equilib-
rium climate sensitivity (S). The coupled model run with
4xCO2 exhibits an extrapolated sensitivity (S 5 7.46 K)
that is more than twice that of the 2xCO2 run (S 5 3.49
K). The difference is, however, not statistically signifi-
cant as the model is far from equilibrated with the
applied forcings at the end of the runs. When instead
coupled to a mixed-layer ocean the model reaches statio-
narity after about two decades, thus yielding a more cer-
tain estimate of S. It should be noted that we do not

Table 1. Feedback factors k (W m22 K21) and TOA radiation
imbalance DR (W m22), evaluated on the last 12 years of the
MLO run with 2xCO2 compared to the control MLO runa

kT kW kC kA k DR

From Model 21.19b 0.12
PRP Method 24.05c 1.98 0.63b 0.16 21.28b

CTRL-Kernel 24.18c 1.94 0.72b 0.23 21.29b 20.06
2xCO2-Kernel 24.19c 2.13 0.78b 0.19 21.09b 1.11

aThe kernel-derived estimates are shown in comparison to the more
accurate two-sided PRP method, where the values are taken from
Table 2 in Mauritsen et al. [2013]. The total feedback factors for both
estimates result from the sum of their individual contributions,
whereas the total model feedback factor is based on model TOA radia-
tion fluxes.

bBoth kC and k include contributions from fast cloud adjustments.
Hence, the cloud feedback is more positive than the true temperature-
dependent cloud feedback. Please note, that Mauritsen et al. [2013] use
the 2 m air temperature for their feedback analysis, whereas we use the
surface temperature. This leads to about 5% larger feedback factors in
our case.

ckT is here only evaluated over the troposphere.

Figure 5. Relation between TOA radiation imbalance and surface temperature change in a set of experiments
with the coupled MPI-ESM-LR model, with prescribed SSTs, and using a mixed-layer ocean (MLO). Only global,
annual means are used. Black dots indicate extrapolated values. Dashed and dotted lines are used for separate
regressions, respectively. For the MPI-ESM-LR abrupt 4xCO2 experiment, the regressions are done for the first 20
and the last 130 years, respectively, which is approximately above and below 4.5 K warming. For the MPI-ESM-
LR abrupt 2xCO2 experiment, the regressions are done for the first 20 and last 80 years, respectively, which
approximately above and below 2.25 K warming. The sstClim 4xCO2 experiment uses prescribed SSTs from the
preindustrial MPI-ESM-LR coupled model. The value presented here is a 30 year mean. The AMIP experiments
use prescribed SSTs from observations. The values shown here are 30 year means. The MLO-prescribed SST
experiments use SSTs from the unperturbed MLO run. Positive values indicate energy input in the climate system.
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Historical and future scenarios

IPCC (2021)

Historical simulations include as accurate as 
possible changes in: 

• Greenhouse gases 

• Ozone 

• Aerosols 

• Volcanoes 

• Land use changes 

• Solar forcing 

They can be used for a range of things, for 
example illustrate how unlikely global 
warming would be without greenhouse gases



Historical and future scenarios

IPCC (2021)

The historical simulations are continued 
forward to present and future using scenarios: 

• SSP1-2.6, high mitigation 2-degree scenario 

• SSP2-4.5, mid-range scenario 

• SSP5-8.5, burn all that makes economic 
sense, sort of 

These make different economic and political 
assumptions to come up with emissions and 
concentrations in the future



IPCC (2013) Unpublished



The AMIP and AMIP+4K experiments, honourable mention

The first climate change/impact experiments 
were orchestrated by Robert Cess in the 1980’s 

Here an atmosphere-only setup was used and 
sea surface temperatures, sea ice, etc. is 
prescribed 

Then, to probe the effects of global warming, 
and also climate feedbacks, the ocean surface 
is simply warmed up uniformly, typically +4K 

The advantage is that these runs don’t need to 
be very long, and so can also be run at very 
high resolutions

strength or temperature change. Indeed, when we apply
a forcing of 2xCO2 to MPI-ESM-LR the slopes before
and after year 20 are statistically indistinguishable from
those of the 4xCO2 run (Figure 5 and Table 2),
although it should be noted that internal variability
introduces additional statistical uncertainty when the
model is forced weakly. Here again, the average of a 30
year long experiment with 2xCO2 and prescribed SST
(open symbol) falls on the first regression line and
therefore supports the steeper initial slope of the
coupled run.

[19] What matters in the end, however, is the equilib-
rium climate sensitivity (S). The coupled model run with
4xCO2 exhibits an extrapolated sensitivity (S 5 7.46 K)
that is more than twice that of the 2xCO2 run (S 5 3.49
K). The difference is, however, not statistically signifi-
cant as the model is far from equilibrated with the
applied forcings at the end of the runs. When instead
coupled to a mixed-layer ocean the model reaches statio-
narity after about two decades, thus yielding a more cer-
tain estimate of S. It should be noted that we do not

Table 1. Feedback factors k (W m22 K21) and TOA radiation
imbalance DR (W m22), evaluated on the last 12 years of the
MLO run with 2xCO2 compared to the control MLO runa

kT kW kC kA k DR

From Model 21.19b 0.12
PRP Method 24.05c 1.98 0.63b 0.16 21.28b

CTRL-Kernel 24.18c 1.94 0.72b 0.23 21.29b 20.06
2xCO2-Kernel 24.19c 2.13 0.78b 0.19 21.09b 1.11

aThe kernel-derived estimates are shown in comparison to the more
accurate two-sided PRP method, where the values are taken from
Table 2 in Mauritsen et al. [2013]. The total feedback factors for both
estimates result from the sum of their individual contributions,
whereas the total model feedback factor is based on model TOA radia-
tion fluxes.

bBoth kC and k include contributions from fast cloud adjustments.
Hence, the cloud feedback is more positive than the true temperature-
dependent cloud feedback. Please note, that Mauritsen et al. [2013] use
the 2 m air temperature for their feedback analysis, whereas we use the
surface temperature. This leads to about 5% larger feedback factors in
our case.

ckT is here only evaluated over the troposphere.

Figure 5. Relation between TOA radiation imbalance and surface temperature change in a set of experiments
with the coupled MPI-ESM-LR model, with prescribed SSTs, and using a mixed-layer ocean (MLO). Only global,
annual means are used. Black dots indicate extrapolated values. Dashed and dotted lines are used for separate
regressions, respectively. For the MPI-ESM-LR abrupt 4xCO2 experiment, the regressions are done for the first 20
and the last 130 years, respectively, which is approximately above and below 4.5 K warming. For the MPI-ESM-
LR abrupt 2xCO2 experiment, the regressions are done for the first 20 and last 80 years, respectively, which
approximately above and below 2.25 K warming. The sstClim 4xCO2 experiment uses prescribed SSTs from the
preindustrial MPI-ESM-LR coupled model. The value presented here is a 30 year mean. The AMIP experiments
use prescribed SSTs from observations. The values shown here are 30 year means. The MLO-prescribed SST
experiments use SSTs from the unperturbed MLO run. Positive values indicate energy input in the climate system.
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Ensembles, large ensembles and the grand ensemble

Weather can be predicted up to a point in 
the future, depending on what you are 
interested in 

Caused by inherent chaos, a small error in 
initial state grows exponentially  

In weather forecasts ensemble weather 
forecasting systems exploit this to explore 
forecast uncertainty 

Ensemble forecasts consists of many runs 
with the same model, but starting from 
slightly different initial conditions



Ensembles, large ensembles and the grand ensemble
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Table 1
Initialization Branching Times From the Preindustrial Control Run

Ensemble member Branch time Ensemble member Branch time
1 1898 51 3164
2 1946 52 3188
3 1994 53 3212
4 2042 54 3236
5 2090 55 3260
6 2138 56 3284
7 2186 57 3308
8 2234 58 3332
9 2282 59 3356
10 2330 60 3380
11 2378 61 3404
12 2426 62 3428
13 2474 63 3452
14 2522 64 3476
15 2570 65 3500
16 2618 66 3524
17 2666 67 2906
18 2714 68 2930
19 2762 69 2954
20 2810 70 2978
21 1874 71 2822
22 1922 72 2846
23 1970 73 2870
24 2018 74 2894
25 2066 75 2918
26 2114 76 2942
27 2162 77 2966
28 2210 78 2990
29 2258 79 3014
30 2306 80 3038
31 2354 81 3062
32 2402 82 3086
33 2450 83 3110
34 2498 84 3134
35 2546 85 3158
36 2594 86 3182
37 2642 87 3206
38 2690 88 3230
39 2738 89 3254
40 2786 90 3278
41 2834 91 3302
42 2882 92 3326
43 2858 93 3350
44 3006 94 3374
45 3020 95 3398
46 3044 96 3422
47 3068 97 3446

MAHER ET AL. 4

…

MPI-GE

• It has become increasingly popular to produce 
ensembles with climate models 

• NCAR first created their LENS1 ensemble with 
micro perturbations in 1920 (Kay et al. 2015) 

• MPI conducted a 100 member ensemble, but 
instead initialised each from a different year in the 
control run (Maher et al. 2019)



Ensembles, large ensembles and the grand ensemble

A single realisation, lucky strike?

With 100 member ensemble we can 
say that observations are mostly 

within the models variability:

We can also cleanly separate the 
forced response (ensemble mean) 

from the internal variability



Ensembles, large ensembles and the grand ensemble
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Figure 5. Comparison of the MPI-ESM1.1-LR 100-member ensemble and the MPI-ESM1.2-LR 10-member ensemble
historical experiments with observed surface temperature. Left is the temporal evolution of global mean temperature
with a reference period of 1850–1899. Right panel is showing the distribution of modeled centennial warming defined
as 1976–2005 relative to 1850–1899.

we accomplished this goal Figure 5 provides a comparison with observations. Shown is 100 historical simu-
lations using the MPI-ESM1.1-LR model, also referred to as the grand ensemble (Maher et al., 2019), along
with 10 simulations using the MPI-ESM1.2-LR model. Both model versions are based on the ECHAM6.3
atmosphere model, share the same ECS, and they mainly differ in terms of their historical forcing which are
from CMIP5 and CMIP6, respectively. Here the main difference is that MPI-ESM1.2-LR uses the recently
developed simple-plume aerosol parameterization (Fiedler et al., 2017; Stevens et al., 2017).

The runs are compared with the Cowtan and Way (2014) in-filled HadCRUT data set. The in-filling proce-
dure of unobserved regions increases the global warming by about 0.1 K compared to the original data set. It
is seen that the ensemble means of the two model versions differ fairly little, with slightly less overall warm-
ing in MPI-ESM1.2-LR, and that on average they track the long term observed global mean temperature very
well (right panel). Also, the observed temperature is only occasionally outside the range spanned by the 100
individual ensemble members, as is to be expected if the model exhibits an unbiased mean response and a
reasonable amount of internal variability. Thus, the tuned model provides an excellent representation of the
observed global warming.

There is, however, many ways in which a model can match the observed centennial warming, foremost by
compensating a high climate sensitivity with strong aerosol cooling (Golaz et al., 2013, 2019; Kiehl, 2007).
It is possible to estimate the transient warming (T) based on bulk model properties as

T ≈ −F
! − "#

, (2)

where F is the change in total forcing over the period of interest, " the ocean heat uptake efficacy (representa-
tive of pattern effects), and # is the deep ocean heat uptake coefficient. To arrive at this expression one makes
the zero-layer approximation to the two-layer Winton-Held model (Gregory & Forster, 2008; Geoffroy et al.,
2013; Held et al., 2010; Jiménez-de-la-Cuesta & Mauritsen, 2019; Winton et al., 2010). From this equation
we see that as climate sensitivity increases, meaning the negative feedback parameter ! decreases in mag-
nitude, the transient temperature response increases. This may be compensated by larger deep ocean heat
uptake, stronger pattern effects, or a weaker forcing. The former two factors are difficult to control, whereas
a weaker total forcing can often be achieved through enhanced aerosol indirect effects.

We devise the two-layer model to investigate how a historical simulation with a 7 K climate sensitivity model
might have turned out. We use a version with parameters determined for MPI-ESM1.2-LR representing both
the pattern effect and state-dependent feedback,

C dT
dt = F + !T + aT2 − "#(T − Td)

Cd
dTd
dt = #(T − Td),

(3)

where F is a radiative forcing, T and Td the temperatures of the upper and deep layers with respect to an
unforced steady state, C and Cd the heat capacities of the two layers, ! = −1.65 W·m−2·K−1 is the feedback
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Previously: how close is the model to observations? 
And when is it close enough? 

Now: is the model ensemble behaviour consistent 
with observations, which is just one realisation?



Ensembles, large ensembles and the grand ensemble

Keil et al. (2020)

Previously: how close is the model to observations? 
And when is it close enough? 

Now: is the model ensemble behaviour consistent 
with observations, which is just one realisation?

ARTICLES NATURE CLIMATE CHANGE

internal variability of the WH temperatures in individual realiza-
tions is likely to be influenced by the low-latitude AMOC5,9, the 
long-term forced SST trend over the historical period (Fig. 1b) can 
only be attributed to the high-latitude OHT changes.

The exact shape of the temperature pattern, including the warm-
ing off the North American east coast (Fig. 1a), has been linked 
to the mechanism of a declining AMOC and therefore suggested 
to be an important indicator for a climate model’s ability to pro-
duce a realistic ocean circulation response and WH9. This warm-
ing patch is not reproduced in the historical ensemble mean  
(Fig. 1b), which might be due to the model resolution9,22. However, 
the details of the temperature pattern in the historical ensemble (and 
the observations) are greatly influenced by internal variability and 
therefore show considerable variation throughout the ensemble. As 
the AMOC south of 50° N does not show robust changes in the his-
torical period (Fig. 1c), it is not surprising that the warming patch is 
not a robust feature of the historical WH. For stronger forcing. the 
warming patch appears in the ensemble mean (Fig. 1c) along with 
the emerging trend of the AMOC decline (Fig. 1b).

It can be revealing to inspect how the low- and high-latitude 
OHTs are linked in natural variability and under forcing21: in the 
absence of externally forced global warming, the OHTs at lower and 
higher latitudes are in phase (Fig. 6), which thereby results in a large 
magnitude of the AMOC–WH relationship. In the 1pctCO2 experi-
ment, however, this breaks down such that heat import from the 
south decreases and export to the north increases at the same time, 
and as a consequence the AMOC–WH relationship also changes 
substantially under greenhouse gas forcing. After the 80-year mark 
the relationship between low- and high-latitude OHT returns to its 
preindustrial in-phase relationship.

Summary and discussion
We used the MPI-ESM1.1 in the low-resolution (LR) setting to 
investigate the WH, but the characteristics of the SST pattern8, as 
well as the related circulation changes21, vary throughout climate 
models. This may be related to model resolution or different for-
mulations of the physical processes. We acknowledge that our study 
does not span the full range of a multimodel assessment. For exam-
ple, although we exclude vertical mixing as a driver for the WH in 
this study, it has been shown that this process is important in some 
models8. In contrast, the disadvantages of studies that use many 
models, but a small amount of realizations, is that the spread due to 
model biases cannot be separated from the spread related to inter-
nal variability, which is especially important in the North Atlantic. 
Here we can precisely account for internal variability, which only 
leaves the model bias as an error source. In addition, conducting 
the experiments with locked clouds and a mixed-layer ocean in the 
same model family makes the results comparable.

Recent attempts to attribute the emergence of the WH predomi-
nately to an AMOC slow-down5,8,9 overlook the multitude of physical 
mechanisms that control the North Atlantic SST response to forced 
warming (Fig. 5). Further, even if a slow-down is recorded in direct 
measurements of the overturning circulation14, it is futile to attribute 
this signal to anthropogenic forcing, because the AMOC natural 
variability dominates the relatively weakly forced signal during the 
observational period15. Nevertheless, the surface-temperature WH 
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Fig. 4 | North Atlantic OHT changes in the Grand Ensemble. a, Evolution 
of the Atlantic heat transport anomalies relative to the preindustrial control 
simulation at 26.25°!N (black solid line) and 63.75°!N (black dashed line) in 
the 1pctCO2 experiment. Shading represents the 5th and 95th percentiles 
of the ensemble. b, Ensemble mean linear trends of the Atlantic OHT 
for the first 80!yr in the 1pctCO2 ensemble. Shading represents the 5th 
and 95th percentiles of the total heat transport trend (black line) of the 
ensemble. Linear trends of the AMOC and gyre components are shown 
in red and blue, respectively. The latitudes chosen in a are those at which 
the strongest positive and negative trends of heat transport occur and 
thus they separate regions of increased heat convergence and divergence, 
as indicated by the corresponding continuous and dashed vertical lines 
in b. c, Ensemble mean linear trends of the Atlantic OHT in the historical 
ensemble from 1850 to 2005. The colour lines and grey shading are as in b.

Fig. 5 | Schematic illustration of the drivers of the WH. The AMOC is 
indicated by red arrows, the gyre circulation by blue arrows and cloud 
feedback in the form of reflected shortwave radiation by yellow arrows. 
Shading represents the surface temperature trend of the 1pctCO2 increase 
per year ensemble.
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internal variability of the WH temperatures in individual realiza-
tions is likely to be influenced by the low-latitude AMOC5,9, the 
long-term forced SST trend over the historical period (Fig. 1b) can 
only be attributed to the high-latitude OHT changes.

The exact shape of the temperature pattern, including the warm-
ing off the North American east coast (Fig. 1a), has been linked 
to the mechanism of a declining AMOC and therefore suggested 
to be an important indicator for a climate model’s ability to pro-
duce a realistic ocean circulation response and WH9. This warm-
ing patch is not reproduced in the historical ensemble mean  
(Fig. 1b), which might be due to the model resolution9,22. However, 
the details of the temperature pattern in the historical ensemble (and 
the observations) are greatly influenced by internal variability and 
therefore show considerable variation throughout the ensemble. As 
the AMOC south of 50° N does not show robust changes in the his-
torical period (Fig. 1c), it is not surprising that the warming patch is 
not a robust feature of the historical WH. For stronger forcing. the 
warming patch appears in the ensemble mean (Fig. 1c) along with 
the emerging trend of the AMOC decline (Fig. 1b).

It can be revealing to inspect how the low- and high-latitude 
OHTs are linked in natural variability and under forcing21: in the 
absence of externally forced global warming, the OHTs at lower and 
higher latitudes are in phase (Fig. 6), which thereby results in a large 
magnitude of the AMOC–WH relationship. In the 1pctCO2 experi-
ment, however, this breaks down such that heat import from the 
south decreases and export to the north increases at the same time, 
and as a consequence the AMOC–WH relationship also changes 
substantially under greenhouse gas forcing. After the 80-year mark 
the relationship between low- and high-latitude OHT returns to its 
preindustrial in-phase relationship.

Summary and discussion
We used the MPI-ESM1.1 in the low-resolution (LR) setting to 
investigate the WH, but the characteristics of the SST pattern8, as 
well as the related circulation changes21, vary throughout climate 
models. This may be related to model resolution or different for-
mulations of the physical processes. We acknowledge that our study 
does not span the full range of a multimodel assessment. For exam-
ple, although we exclude vertical mixing as a driver for the WH in 
this study, it has been shown that this process is important in some 
models8. In contrast, the disadvantages of studies that use many 
models, but a small amount of realizations, is that the spread due to 
model biases cannot be separated from the spread related to inter-
nal variability, which is especially important in the North Atlantic. 
Here we can precisely account for internal variability, which only 
leaves the model bias as an error source. In addition, conducting 
the experiments with locked clouds and a mixed-layer ocean in the 
same model family makes the results comparable.

Recent attempts to attribute the emergence of the WH predomi-
nately to an AMOC slow-down5,8,9 overlook the multitude of physical 
mechanisms that control the North Atlantic SST response to forced 
warming (Fig. 5). Further, even if a slow-down is recorded in direct 
measurements of the overturning circulation14, it is futile to attribute 
this signal to anthropogenic forcing, because the AMOC natural 
variability dominates the relatively weakly forced signal during the 
observational period15. Nevertheless, the surface-temperature WH 
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Fig. 4 | North Atlantic OHT changes in the Grand Ensemble. a, Evolution 
of the Atlantic heat transport anomalies relative to the preindustrial control 
simulation at 26.25°!N (black solid line) and 63.75°!N (black dashed line) in 
the 1pctCO2 experiment. Shading represents the 5th and 95th percentiles 
of the ensemble. b, Ensemble mean linear trends of the Atlantic OHT 
for the first 80!yr in the 1pctCO2 ensemble. Shading represents the 5th 
and 95th percentiles of the total heat transport trend (black line) of the 
ensemble. Linear trends of the AMOC and gyre components are shown 
in red and blue, respectively. The latitudes chosen in a are those at which 
the strongest positive and negative trends of heat transport occur and 
thus they separate regions of increased heat convergence and divergence, 
as indicated by the corresponding continuous and dashed vertical lines 
in b. c, Ensemble mean linear trends of the Atlantic OHT in the historical 
ensemble from 1850 to 2005. The colour lines and grey shading are as in b.

Fig. 5 | Schematic illustration of the drivers of the WH. The AMOC is 
indicated by red arrows, the gyre circulation by blue arrows and cloud 
feedback in the form of reflected shortwave radiation by yellow arrows. 
Shading represents the surface temperature trend of the 1pctCO2 increase 
per year ensemble.
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Figure 5. Comparison of the MPI-ESM1.1-LR 100-member ensemble and the MPI-ESM1.2-LR 10-member ensemble
historical experiments with observed surface temperature. Left is the temporal evolution of global mean temperature
with a reference period of 1850–1899. Right panel is showing the distribution of modeled centennial warming defined
as 1976–2005 relative to 1850–1899.

we accomplished this goal Figure 5 provides a comparison with observations. Shown is 100 historical simu-
lations using the MPI-ESM1.1-LR model, also referred to as the grand ensemble (Maher et al., 2019), along
with 10 simulations using the MPI-ESM1.2-LR model. Both model versions are based on the ECHAM6.3
atmosphere model, share the same ECS, and they mainly differ in terms of their historical forcing which are
from CMIP5 and CMIP6, respectively. Here the main difference is that MPI-ESM1.2-LR uses the recently
developed simple-plume aerosol parameterization (Fiedler et al., 2017; Stevens et al., 2017).

The runs are compared with the Cowtan and Way (2014) in-filled HadCRUT data set. The in-filling proce-
dure of unobserved regions increases the global warming by about 0.1 K compared to the original data set. It
is seen that the ensemble means of the two model versions differ fairly little, with slightly less overall warm-
ing in MPI-ESM1.2-LR, and that on average they track the long term observed global mean temperature very
well (right panel). Also, the observed temperature is only occasionally outside the range spanned by the 100
individual ensemble members, as is to be expected if the model exhibits an unbiased mean response and a
reasonable amount of internal variability. Thus, the tuned model provides an excellent representation of the
observed global warming.

There is, however, many ways in which a model can match the observed centennial warming, foremost by
compensating a high climate sensitivity with strong aerosol cooling (Golaz et al., 2013, 2019; Kiehl, 2007).
It is possible to estimate the transient warming (T) based on bulk model properties as

T ≈ −F
! − "#

, (2)

where F is the change in total forcing over the period of interest, " the ocean heat uptake efficacy (representa-
tive of pattern effects), and # is the deep ocean heat uptake coefficient. To arrive at this expression one makes
the zero-layer approximation to the two-layer Winton-Held model (Gregory & Forster, 2008; Geoffroy et al.,
2013; Held et al., 2010; Jiménez-de-la-Cuesta & Mauritsen, 2019; Winton et al., 2010). From this equation
we see that as climate sensitivity increases, meaning the negative feedback parameter ! decreases in mag-
nitude, the transient temperature response increases. This may be compensated by larger deep ocean heat
uptake, stronger pattern effects, or a weaker forcing. The former two factors are difficult to control, whereas
a weaker total forcing can often be achieved through enhanced aerosol indirect effects.

We devise the two-layer model to investigate how a historical simulation with a 7 K climate sensitivity model
might have turned out. We use a version with parameters determined for MPI-ESM1.2-LR representing both
the pattern effect and state-dependent feedback,

C dT
dt = F + !T + aT2 − "#(T − Td)

Cd
dTd
dt = #(T − Td),

(3)

where F is a radiative forcing, T and Td the temperatures of the upper and deep layers with respect to an
unforced steady state, C and Cd the heat capacities of the two layers, ! = −1.65 W·m−2·K−1 is the feedback
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The Multiverse (a bit philosophical)

Perhaps think of models as a kind of alternative 
universe with slightly different physical laws than 
our universe 

Each of these alternative worlds can be realised as 
many times as we like through experimentation 

But the real world is what we are trying to 
understand, and we only get to see a single 
experiment with that


