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Model diversity: friend or foe? 

Wilcox et al. (2013)
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Figure S6. 1980-2014 JJA-mean precipitation [mm day�1] and 850hPa winds [m s�1] from (a): APHRODITE and ERA-Interim;

(b):GPCC and ERA-Interim; (c)-(p): Individual CMIP6 models. Values in the top right corner of each panel show the pattern correlation

withAPHRODITE precipitation.

Wilcox et al. (2020)



Model diversity: friend or foe? 

www.met.reading.ac.uk/~laura/home

9

Figure S8. JJA-mean 1980-2014 mean precipitation overlaid with 850 hPa wind from (a): GPCP and ERA-Interim; (b): CMAP and

ERA-Interim; (c): CMIP6 (multi-model mean). Values in the top right corner show the pattern correlation with APHRODITE

precipitation. (d):Precipitation bias in CMAP relative to GPCP; (e): CMIP6 precipitation relative to GPCP and CMIP6 850 hPa winds

relative to ERA-Interim. (f): Taylor diagram showing the relationship between individual CMIP6 models, the CMIP6 multi-model mean

(point 16), and CMAP (point1), with GPCC precipitation.

Wilcox et al. (2020)
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Summary for Policymakers

Figure SPM.8 | Selected indicators of global climate change under the five illustrative scenarios used in this Report
The projections for each of the five scenarios are shown in colour. Shades represent uncertainty ranges – more detail is provided for each panel below. The black 
curves represent the historical simulations (panels a, b, c) or the observations (panel d). Historical values are included in all graphs to provide context for the 
projected future changes. 

Human activities a@ect all the mafor climate system componentsķ with 
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Associate Professor at the National Centre for 
Atmospheric Science, University of Reading

Chair of the Regional Aerosol Model Intercomparison 
Project (RAMIP)

IPCC AR6 WG1 Chapter 8 author (water cycle change)

Member of the Atmosphere author team for the 
CMIP7 data request

Some (limited!) involvement in the development and 
testing of the UK Earth System Model (UKESM)

A long-term user of CMIP

UKESM1.2

• ~100km resolution, 85 level atmosphere

• Multilayer snow scheme with melt percolation 
and refreezing

• Greenland dynamics with up to 1.2km 
resolution, Antarctica at 1km

• Explicit Lagrangian icebergs 

• Ocean underneath floating Antarctic ice shelves

• Surface Antarctic shelf calving front is fixed, but 
grounding line can retreat

• No marine forcing of Greenland outlet glaciers
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The Coupled Model Intercomparison Project 
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Core DECK (piControl, …. ) and 
historical simulations, with endorsed 
MIPs exploring key science questions 

A MIP explores the same question, in 
the same (ish) way, in multiple models, 
allowing us to explore the effects of 
model structural uncertainty

CMIP experiments allow us to explore 
the effects of emission uncertainty (e.g. 
ScenarioMIP), or quantify the role of 
individual climate forcers in the role of 
climate change (e.g. DAMIP, 
AerChemMIP), etc. 

Considering these experiments as part 
of a MIP allows us to better quantify 
uncertainty, and to learn which 
processes might be important for 
climate responses to forcing

CMIP cycles

CMIP1: control simulations, flux corrections 

CMIP2: gradually increasing CO2 at 1 percent 
per year to probe transient climate response 
(TCR) 

CMIP3: historical and future scenarios, also 
included AMIP for evaluation, mixed-layer 
ocean models for climate sensitivity, and first 
open access to the public! 

CMIP5: adds abrupt 4xCO2 and other 
idealised experiments, and also decadal 
predictions and carbon cycle models (ESMs) 

CMIP6: more of everything, and a more 
distributed approach with endorsed sub-MIPs 
focused on specific questions

Eyring et al. (2016)



The CMIP6 models
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Brunner et al. (2020)

78 models from 32 centres 
participated in CMIP6

Example family tree for 33 CMIP6 models. 

Models branching further to the 
left are more dependent

Labels with the same colour indicate models 
with obvious dependencies, such as shared 
components or the same origin 

Models with no clear dependencies are 
labeled in black. 

An estimation of internal variability is given 
using grey shading

1004 L. Brunner et al.: Reduced global warming from CMIP6 projections when weighting models

five lowest ranking models, four have a TCR above 2.5 �C,
and all models with a TCR above 2.5 �C receive less then
equal weight. The eight highest ranking models, in turn, have
TCR values ranging from 1.5 to 2.5 �C; therefore, the lie in
the middle of the CMIP6 TCR range. See Table S2 for a sum-
mary of all model weights and TCR values.

In addition to the combined weighting, Fig. 4 also shows
the independence and performance weights separately. We
discuss model independence in more detail in the next sec-
tion. For the model performance weighting, the relative dif-
ference from the combined weighting (i.e., the influence of
the independence weighting) is mostly below 50 %, with the
MIROC model family being one notable exception. Both
MIROC models are very independent, which shifts MIROC6
from a below-average model (based on the pure performance
weight; square in Fig. 4) to an above-average model in the
combined weight (dot in Fig. 4), effectively more than dou-
bling its performance weight. For MIROC-ES2L the scaling
due to independence is similarly high, but its total weight is
still dominated by the very low performance weight. In the
next section, we investigate if these independence weights
indeed correctly represent the complex model interdepen-
dencies in the CMIP6 MME and appropriately down-weight
models that are highly dependent on other models.

4.2 Validation of the independence weighting

Focusing on the independence weights in Fig. 4, one can
broadly distinguish three cases: (i) relatively independent
models, (ii) clusters of models that are quite dependent, and
(iii) models for which the independence weighting does not
really influence the weighting. To visualize and discuss these
cases somewhat quantitatively, we show a CMIP6 model
family tree similar to the work by Masson and Knutti (2011)
and Knutti et al. (2013).

Using the same two diagnostics, namely horizontally re-
solved global temperature and sea level pressure climatolo-
gies (from 1980 to 2014), we apply a hierarchical cluster-
ing approach (Sect. 2.7). Figure 5 shows the resulting family
tree of CMIP6 models similar to the work by Masson and
Knutti (2011) and Knutti et al. (2013). In this tree, models
that are closely related branch further to the left, whereas
very independent model clusters branch further to the right.
The mean generalized distance between two initial-condition
members of the same model is used as an estimation of the
internal variability and is indicated using gray shading. Mod-
els that have a distance similar to this value (e.g., the two
CanESM5 model versions) are basically indistinguishable.
The independence shape parameter used through the paper
(�S = 0.54) is shown as dashed vertical line.

A comprehensive investigation of the complex interdepen-
dencies within the multi-model ensemble in use and further
between models from the same institution or of similar ori-
gin is beyond the scope of this study and will be the sub-
ject of future work. Here, we limit ourselves to pointing out

Figure 5. Model family tree for all 33 CMIP6 models used in this
study, similar to Knutti et al. (2013). Models branching further to
the left are more dependent, and models branching further to the
right are more independent. The analysis is based on global, hori-
zontally resolved tasCLIM and pslCLIM in the period from 1980 to
2014. The independence shape parameter �S is indicated as dashed
vertical line, and an estimation of internal variability is given using
gray shading. Labels with the same color indicate models with ob-
vious dependencies, such as shared components or the same origin,
whereas models with no clear dependencies are labeled in black.

several base features of the output-based clustering, which
serve as indications that it is skillful with respect to identi-
fying interdependent models. The labels of models with the
same origin or with known shared components are marked
in the same color in Fig. 5. These two factors are the most
objective measure for a priori model dependence that we
have. The information about the model components is taken
from each model’s description page on the ES-DOC explorer
(https://es-doc.org/cmip6/, last access: 17 April 2020), as
listed in Table S4.

Figure 5 clearly shows that clustering models based on
the selected diagnostics performs well: models with shared
components or with the same origin (indicated by the same
color) are always grouped together. Examining this in more
detail, we find, for example, that closely related models such
as low- and high-resolution versions (MPI-ESM-2-LR and
MPI-ESM-2-HR; CNRM-CM6-1 and CNRM-CM6-1-HR)
or versions with only one differing component (CESM2 and
CESM2-WACCM; INM-CM5-0 and INM-CM4-8; both dif-
fering only in the atmosphere) are detected as being very sim-

Earth Syst. Dynam., 11, 995–1012, 2020 https://doi.org/10.5194/esd-11-995-2020



The CMIP6 models
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Wilcox (2025)
https://doi.org/10.17605/OSF.IO/8FWJ3

https://doi.org/10.17605/OSF.IO/8FWJ3


User beware…. 
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Wilcox (2025)

Different models aren’t always so different…. 

• CESM2 and CESM-FV2 just have different resolutions

• CESM2 and CESM2-WACCM have atmospheric chemistry 

The same model is sometimes different…. 

• GISS use ensemble physics codes to distinguish between model versions. 

• rXiXpXfX

• GISS-E2-1-G r1i1p1f1, r1i1p3f1, and r1i1p5f1 all have different chemistry schemes - very different 
models, which are often lumped together due to this labelling 

While sometimes, the same model really is just the same… 

• CanESM5 p1 and p2 refer to a micro perturbation.  As long as you’re not looking at variables 
closely related to the perturbed variable, you can just lump all of these together to create a 
larger ensemble 



Global aerosol
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William Putman, NASA/Goddard

GEOS-5, 10km resolution 
Red: Dust     Blue: Sea salt     Green: Smoke     White: Sulphate



Aerosol effects on climate
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IPCC (2007)

Many ways for aerosols to interact with climate

Some models don’t simulate these interactions

Different models have different approaches to representing these interactions 



Aerosol effects on climate
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IPCC (2013)

Final Draft (7 June 2013) Technical Summary IPCC WGI Fifth Assessment Report 

Do Not Cite, Quote or Distribute TS-90 Total pages: 127 

 

 

 

 

Figure TS.6: Radiative Forcing (RF) and Effective Radiative Forcing (ERF) of climate change during the industrial 

era. Top: Forcing by concentration change between 1750 and 2011 with associated uncertainty range (solid bars are 

ERF, hatched bars are RF, green diamonds and associated uncertainties are for RF assessed in AR4). Bottom: 

Probability Density Functions for the ERF, for the aerosol, well-mixed greenhouse gas (WMGHG) and total. The green 

lines show the AR4 RF 90% confidence intervals and can be compared with the red, blue and black lines which show 

the AR5 ERF 90% confidence intervals (although RF and ERF differ, especially for aerosols). The ERF from surface 

albedo changes and combined contrails and contrail induced cirrus is included in the total anthropogenic forcing, but 

not shown as a separate probability density function. For some forcing mechanisms (ozone, land use, solar) the RF is 

assumed to be representative of the ERF but an additional uncertainty of 17% is added in quadrature to the RF 

uncertainty. {Figures 8.15, 8.16} 

 

Aerosol forcing is the most uncertain anthropogenic climate forcing, reflecting challenges with 
both observations and modelling 
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Models are driven with the same emissions

X - 16 WILCOX ET AL.: DIVERSITY IN THE CLOUD ALBEDO EFFECT

CanESM2: 4.07mg CSIRO-Mk3.6.0: 6.05mg HadGEM2-CC: 2.73mgGFDL-CM3: 2.22mg(c)(b)(a) (d)

HadGEM2-ES: 2.72mg IPSL-CM5A-LR: 2.26mg IPSL-CM5A-MR: 2.25mg MIROC-ESM-CHEM: 3.15mg(h)(f)(e) (g)

MIROC-ESM: 1.74mg MIROC5: 0.53mg MRI-CGCM3: 4.27mg NorESM1-M: 2.74mg(l)(k)(j)(i)

Figure 2. 1986-2005 mean column total sulfate load for (a): CanESM2, (b): CSIRO-Mk3.6.0,

(c): GFDL-CM3, (d): HadGEM2-CC, (e): HadGEM2-ES, (f): IPSL-CM5A-LR, (g): IPSL-

CM5A-MR, (i): MIROC-ESM-CHEM, (j): MIROC-ESM, (k): MIROC5, (l): MRI-CGCM3,

(m): NorESM1-M.

D R A F T February 20, 2015, 3:04pm D R A F T

• Substantial inter-model diversity in aerosol load, even in the preindustrial period 
‣Diversity in absolute mass and distribution 
‣Factor of four spread in the global mean

1986 - 2005 mean 
sulphate load

Wilcox et al. (2015), GRL
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Models are driven with the same emissions

• Different aerosol process representation means this diversity propagates through to 
ERF

2014 vs. 1850 
aerosol ERF

Wilcox et al. (2020), ACP

2

Figure S1. 2014 vs. 1850 effective radiative forcing (ERF) due to anthropogenic aerosols in individual CMIP6 models. The global mean

value(in W m�2) is shown in the top right of each panel. Figures S1 to S4 show the ERF due to different drivers, using the same colour

scale.Model positions are consistent across the figures.
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Models are driven with the same emissions

• Different aerosol process representation means this diversity propagates through to 
ERF

2014 vs. 1850 GHG 
ERF

Wilcox et al. (2020), ACP

3

Figure S2. 2014 vs. 1850 effective radiative forcing (ERF) due to greenhouse gases in individual CMIP6 models. The global mean value

(inW m�2) is shown in the top right of each panel. Figures S1 to S4 show the ERF due to different drivers, using the same colour scale.

Modelpositions are consistent across the figures.
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Models are driven with the same emissions

• Different aerosol process representation means this diversity propagates through to 
ERF

2014 vs. 1850 
anthropogenic ERF

Wilcox et al. (2020), ACP

5

Figure S4. 2014 vs. 1850 effective radiative forcing (ERF) due to anthropogenic drivers in individual CMIP6 models. The global mean

value(in W m�2) is shown in the top right of each panel. Figures S1 to S4 show the ERF due to different drivers, using the same colour

scale.Model positions are consistent across the figures.



www.met.reading.ac.uk/~laura/home

Model diversity can: 

1. show us which processes are important for model performance

2. help us to understand the causes of biases in our own model

3. help us to understand the physical drivers of uncertainties in the 

simulated response to forcing

4. be used to constrain model estimates 

But, it can be difficult to use an ‘ensemble of opportunity’ to isolate the role 

of the thing you’re interested in 
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Model diversity can: 

1. show us which processes are important for model performance

2. help us to understand the causes of biases in our own model

3. help us to understand the physical drivers of uncertainties in the 

simulated response to forcing

4. be used to constrain model estimates 

But, it can be difficult to use an ‘ensemble of opportunity’ to isolate the role 

of the thing you’re interested in 



Model diversity can show us which processes are important
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Models with a representation of  the 
indirect effect of sulphate (SA)

Models with a representation of 
the direct effect only (SD)

Global near-surface temperature

Wilcox et al. (2013), ERL

CMIP5 contained an unprecedented number of models with a representation of the indirect effect

These models give a better reproduction of historical trends due to greater aerosol cooling

SA
SD
HadCRUT4

SA
SD
CRUTS3.1

SA
SD

SA
SD

(d)(c)

(b)(a)

HadCRUT4
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Model diversity can: 

1. show us which processes are important for model performance

2. help us to understand the causes of biases in our own model

3. help us to understand the physical drivers of uncertainties in the 

simulated response to forcing

4. be used to constrain model estimates 

But, it can be difficult to use an ‘ensemble of opportunity’ to isolate the role 

of the thing you’re interested in 



Model diversity can help us to understand biases in our own model
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Earth system models cool too much in the mid-twentieth century

Linked to large sensitivity to aerosol changes in these models

This example is a case of more sophisticated models having poorer performance….

5 
 

regressed out). This residual can then be interpreted as due to differences in the albedo 117 

of clouds between the historical and hist-piAer, and will be called the "cloud-albedo 118 

term". Note that this method of calculation implies that purely albedo effects cannot 119 

be distinguished from general residual terms that result from the linear approximation 120 

made.  121 

Note that our decomposed ACI does not correspond exactly to the definitions of 122 

“first” and “second” aerosol indirect effects. For example, the first indirect effect is 123 

properly defined as variations of aerosol forcing when cloud droplet number 124 

concentration varies at a constant value of the cloud liquid water path. This effect 125 

cannot be isolated from the available CMIP6 output.  126 

 127 

3. The "pot-hole" bias in CMIP6 ESMs 128 
 129 

 130 
 131 
Figure 1. (a) Historical near-global mean (60oS to 65oN) surface air temperature (TAS) anomalies 132 
from HadCRUT5 (thick black line), the multi-member ensemble mean for each ESM (MMM, 133 
solid color lines), and their ensemble (MME, dashed red line). (b) is the same as (a), but for the 134 
lower-complexity models. The baseline is from 1850 to 1900. Units: oC. Value in bracket is the 135 

Zhang et al. (2021)



Better is not always better…
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Pothole bias not present in physical models

Comparison of ESMs and physical models within the same 
family shows that the bias relates to excessive high 
latitude cooling

Zhang et al. (2021)

18614 J. Zhang et al.: The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990

Figure 1. (a) Historical near-global mean (60� S to 65� N) surface air temperature (TAS) anomalies relative to 1850–1900 mean from
HadCRUT5 (thick black line), the ensemble mean for each ESM (solid color lines), and multi-model mean (MMM, dashed black line).
Panel (b) is the same as panel (a) but for the lower-complexity models. Units: �C. Value in bracket is the number of available members for
each model.

there is a broadly linear relationship between (i) loadSO4 and
emissions and (ii) aerosol radiation with loadSO4 (and non-
linearity due to cloud albedo or amount or any interaction
is small at global scale as suggested in Booth et al., 2018).
Should these interaction terms be non-negligible in this anal-
ysis, we still expect the broader attribution of the reasons for
the model diversity in temperature response over the PHC pe-
riod, either how they simulate aerosol concentrations or how
they simulate the response to this, to generally hold.

This decomposition method is an approximate approach
designed to be used with existing simulations, rather than
a strict decomposition by dedicated simulations/output vari-
ables not included in CMIP6. It cannot tell us precise infor-
mation about each interaction and adjustment, but it can give
us an indication of why models behave differently.

3 The pothole bias in CMIP6 ESMs

Figure 1a shows the near-global averaged time series of the
annual mean TAS anomaly relative to 1850 to 1900 in Had-
CRUT5 during the historical period from 1850 to 2014, as
well as the ensemble means for each model except for EC-
Earth3-AerChem and GFDL-ESM4 (where only a single re-

alization is available for the hist-piAer experiment). The un-
forced, long-term drifts in TAS may occur in some of the
ESMs, as estimated by their control simulation under pre-
industrial conditions (Yool et al., 2020). We have not ac-
counted for long-term control simulation drifts in our study
as we are assuming that our focus on inter-decadal-scale vari-
ability of TAS anomalies is likely to be fairly insensitive to
any century-scale drifts.

The TAS anomaly in HadCRUT5 is generally above the
baseline climate from the 1940s onwards and warms fastest
from the 1980s to 1990s. Compared with the observations, all
the ESM simulations have negative TAS anomaly biases after
the 1940s, which are also evident in the ensemble-mean his-
torical TAS of 25 CMIP6 models with and without interac-
tive chemistry schemes (Flynn and Mauritsen, 2020). In the
ESMs and their ensemble mean (MMM), the cold anomaly
biases resemble a pothole shape (Fig. 1a), which is relatively
small before the 1950s and after the 2000s but prominent
from the 1960s to 1990s. To reduce the impact of the change
in the spatial pattern of the emissions in the late 20th cen-
tury and the Pinatubo eruption in the early 1990s, we mainly
focus on the excessively cold anomaly from 1960 to 1990
in this study. The impacts from the Agung (1963) and El

Atmos. Chem. Phys., 21, 18609–18627, 2021 https://doi.org/10.5194/acp-21-18609-2021

18616 J. Zhang et al.: The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990

Figure 2. Time–latitude cross section for annual-mean TAS anomalies (shaded) from (a) HadCRUT5, the ensemble mean for each
ESM (b, d, f, h, j, and l), and the corresponding lower-complexity model (c, e, g, i, k, and m). The anomalies are related to the 1850–1900
mean. Units: �C. Note that the color scale intervals in the positive and negative directions are 0.2 and �0.1 �C, respectively. Line contours
range from 20 to 40 ngm�2 s�1 with an interval of 10 ngm�2 s�1 showing the zonal mean anthropogenic surface SO2 emission provided
by CMIP6.

Atmos. Chem. Phys., 21, 18609–18627, 2021 https://doi.org/10.5194/acp-21-18609-2021
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Model diversity can: 

1. show us which processes are important for model performance

2. help us to understand the causes of biases in our own model

3. help us to understand the physical drivers of uncertainties in the 

simulated response to forcing

4. be used to constrain model estimates 

But, it can be difficult to use an ‘ensemble of opportunity’ to isolate the role 

of the thing you’re interested in 



AMOC response to aerosol changes
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2. Methods

We compare the evolution of the AMOC in historical simulations from CMIP5 and CMIP6. We also use
historical simulations from the Detection and Attribution Model Intercomparison Project (DAMIP)
(Gillett et al., 2016), which discriminate external forcing variability in greenhouse gases (GHGs;
hist‐GHG), anthropogenic aerosols (hist‐aer), natural forcing (hist‐nat), and changes in stratospheric ozone
(hist‐stratO3). The data we use are obtained from the relevant CMIP archives. The models included in this
study are summarized in supporting information Table S1. We have used 39 models (totaling 128 members)
from CMIP5, 25 (133 members) for CMIP6 and seven (45 members) for the CMIP6‐DAMIP (counting only
those models that have multiple ensemble members including at least both the “hist‐GHG” and “hist‐aer”
experiments, at the time of writing). For CMIP5 analysis that extends after the end of the CMIP5 historical
simulations we use scenario data from RCP8.5. When computing multimodel ensemble means as in
Figure 1, we first compute the ensemble mean for each model (averaging over all realizations), before
combining these into the grand ensemble mean, that is, 1‐model, 1‐vote. Averaging over all ensemble
members and models simultaneously yields similar conclusions (i.e., 1‐simulation, 1‐vote, not shown).

In many cases, the variable used to store the Atlantic meridional overturning circulation stream function
was not uploaded to the CMIP archives. As such, to increase our ensemble size, we instead use the oceanic
meridional velocities and calculate the overturning stream function directly for each model. Where both
meridional stream function and oceanic meridional velocities exist, the correlation between indices of
annual AMOC variability at 35°N and 1,000 m depth are greater than r = 0.96 in all cases, giving us confi-
dence in our approach (Figure S1). For consistency of approach, in all cases we use the stream function cal-
culated from the meridional velocities. In many of the models, the velocity data do not exist on a regular
latitude/longitude grid but becomes increasingly curved toward the North Pole. As such, we focus on
35°N as a balance between a northerly latitude and one where the true latitudes of the velocity grid lines

(a)

(b)

Figure 1. Historical AMOC change in CMIP. (a) AMOC time series in CMIP5 (blue, comprising 39 models and 128
ensemble members) and CMIP6 (red, comprising 25 models and 133 ensemble members) multimodel ensembles. Also
shown is the subset of seven CMIP6 models with DAMIP experiments (purple). Shading highlights one standard
deviation of the multimodel (anomaly) ensemble. (b) AMOC time series in DAMIP experiments. Lines show annual
mean (thin) and 11‐year running mean (thick). Note the non‐linear y‐axis for clarity. Thin purple lines in panels (a) and
(b) are identical. Vertical dashed lines highlight endpoints of meaning periods (1850–1880) and trends (1940 and 1985)
discussed in the main text.

10.1029/2020GL088166Geophysical Research Letters

MENARY ET AL. 2 of 10

Decadal variability in the 
Atlantic Meridional 
Overturning Circulation 
(AMOC) is influenced by 
changes in anthropogenic 
aerosol, but the extent and 
mechanism of influence 
is uncertain. 

Differences between CMIP5 
and CMIP6 attributed to 
differences in the strength of 
the aerosol forcing. 

Menary et al. (2020)
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F��. 1. Simulated inter-hemispheric imbalance in absorbed solar radiation (ASR_HD) and AMOC. a) shows

anomalies of ASR_HD index for the multi-model mean (MMM, black), and for the sub-ensembles for ‘strong’

and ‘weak’ aerosol forcing (red and blue, respectively). Thick lines show the ensemble mean and grey shading

or dotted lines indicate the 1f spread. Dashed vertical lines indicate the 1965–1985 time-period. Anomalies

are relative to an 1850–1879 climatology. b) shows the same but for the AMOC at 35�N. c) diamonds show a

scatter plot of changes in ASR_HD vs AMOC over 1850–1985 for each models ensemble mean. Changes are

computed by fitting a linear trend to individual model ensemble-mean time series to compute change per year and

then multiplying by the number of years (e.g. 136). Red or blue indicate ‘strong’ and ‘weak’ models. Crosses

indicate MMM (black) and ‘strong’ (red) and ‘weak’ (blue) sub-ensemble means, respectively.
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Not possible to calculate aerosol forcing for all CMIP6 
models (needs a dedicated RFMIP experiment) so 
design a metric that can be calculated from the historical 
experiment…

ASR_HD: SH - NH net solar radiation at the top of the 
atmosphere 
-> positive values indicate less radiation absorbed by 
NH
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F��. 1. Simulated inter-hemispheric imbalance in absorbed solar radiation (ASR_HD) and AMOC. a) shows

anomalies of ASR_HD index for the multi-model mean (MMM, black), and for the sub-ensembles for ‘strong’

and ‘weak’ aerosol forcing (red and blue, respectively). Thick lines show the ensemble mean and grey shading

or dotted lines indicate the 1f spread. Dashed vertical lines indicate the 1965–1985 time-period. Anomalies

are relative to an 1850–1879 climatology. b) shows the same but for the AMOC at 35�N. c) diamonds show a

scatter plot of changes in ASR_HD vs AMOC over 1850–1985 for each models ensemble mean. Changes are

computed by fitting a linear trend to individual model ensemble-mean time series to compute change per year and

then multiplying by the number of years (e.g. 136). Red or blue indicate ‘strong’ and ‘weak’ models. Crosses

indicate MMM (black) and ‘strong’ (red) and ‘weak’ (blue) sub-ensemble means, respectively.
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ASR_HD: SH - NH net solar radiation at the top of the 
atmosphere 
-> positive values indicate less radiation absorbed by 
NH

Strong models have a linear change in ASR_HD 
between 1850 and 1985 greater than 1.5 Wm-2

-> 9 strong models and 8 weak models 

Increase in both ASR_HD and the AMOC from 1850–
1985 with the fastest increase over ∼1940–1985

Strong models have 4x larger anomaly in ASR_HD, 
and 8x larger anomaly in AMOC, vs. weak models for 
1965-1985 relative to 1850-1879. 
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F��. 4. Time series and trends of annual-mean surface flux anomalies averaged over the SPNA. a) shows the

net surface heat flux anomalies (SHF, W m�2) for the multi-model mean (black), and the ‘strong’ and ‘weak’

sub-ensembles (red and blue, respectively). Gray shading and coloured dotted lines shows 1f ensemble spread.

Vertical dotted lines highlight 1965–1985 - note this is the same index shown in fig. 3a. b) - d) show the same, but

for the turbulent heat fluxes (turHF), the net surface shortwave (sNetSW) and the net surface longwave (sNetLW).

All anomalies are made relative to the 1850–1879 mean. f) shows a scatter plot of linear trends in total heat flux

(SHF) compared to trends in AMOC. All trends are computed over 1850–1985, and value shows the total change

over that period computed from the linear fit. All time series are smoothed with a 10-year running mean.

mean, whereas ‘weak’ models have a net warming of 1.5 W m�2 (i.e. a di�erence of -4 W m�2).

In contrast, the di�erence between the sNetSW and sNetLW between ‘strong’ and ‘weak’ models

for the 1965–1985 mean is -0.7 W m�2 and -0.4 W m�2, respectively. The importance of turHF

is also evident when we explore linear trends for individual models; figure 4 bottom row shows

that there is a strong relationship between trends in SHF and AMOC in individual models over

1850–1985 due to the trends in turHF (correlation of -0.92 and -0.82, respectively). In contrast,

the relationship between sNetSW and AMOC is substantially weaker at -0.25. Note, we also find

a correlation of -0.50 between sNetLW and AMOC, but the magnitudes of the sNetLW anomalies

are small in comparison. Although we focus on annual-mean SHFs for brevity, we also note that

di�erences in SPNA turHF anomalies are largely dominated by increased winter heat loss due to
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SHF: surface heat flux
turHF: turbulent heat flux
sNetSW: surface net 
shortwave
sNetLW: surface net 
longwave

SHF anomalies 
dominated by strong 
models 

SHF dominates the overall 
surface density flux 
anomalies

AMOC anomalies in 
CMIP6 are consistent with 
the evolution of surface 
heat fluxes, and their 
impact on surface 
density fluxes, driving 
the AMOC in the ‘strong’ 
models
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F��. 4. Time series and trends of annual-mean surface flux anomalies averaged over the SPNA. a) shows the

net surface heat flux anomalies (SHF, W m�2) for the multi-model mean (black), and the ‘strong’ and ‘weak’

sub-ensembles (red and blue, respectively). Gray shading and coloured dotted lines shows 1f ensemble spread.

Vertical dotted lines highlight 1965–1985 - note this is the same index shown in fig. 3a. b) - d) show the same, but

for the turbulent heat fluxes (turHF), the net surface shortwave (sNetSW) and the net surface longwave (sNetLW).

All anomalies are made relative to the 1850–1879 mean. f) shows a scatter plot of linear trends in total heat flux

(SHF) compared to trends in AMOC. All trends are computed over 1850–1985, and value shows the total change

over that period computed from the linear fit. All time series are smoothed with a 10-year running mean.

mean, whereas ‘weak’ models have a net warming of 1.5 W m�2 (i.e. a di�erence of -4 W m�2).

In contrast, the di�erence between the sNetSW and sNetLW between ‘strong’ and ‘weak’ models

for the 1965–1985 mean is -0.7 W m�2 and -0.4 W m�2, respectively. The importance of turHF

is also evident when we explore linear trends for individual models; figure 4 bottom row shows

that there is a strong relationship between trends in SHF and AMOC in individual models over

1850–1985 due to the trends in turHF (correlation of -0.92 and -0.82, respectively). In contrast,

the relationship between sNetSW and AMOC is substantially weaker at -0.25. Note, we also find

a correlation of -0.50 between sNetLW and AMOC, but the magnitudes of the sNetLW anomalies

are small in comparison. Although we focus on annual-mean SHFs for brevity, we also note that

di�erences in SPNA turHF anomalies are largely dominated by increased winter heat loss due to
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SHF: surface heat flux
turHF: turbulent heat flux
sNetSW: surface net 
shortwave
sNetLW: surface net 
longwave

MMM SHF dominated by 
sNetSW

Differences in SHF 
anomalies between strong 
and weak models are 
dominated by 
differences in turHF

Relationship between 
AMOC and SHF is due 
primarily to turHF
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Model diversity can: 

1. show us which processes are important for model performance

2. help us to understand the causes of biases in our own model

3. help us to understand the physical drivers of uncertainties in the 

simulated response to forcing

4. be used to constrain model estimates 

But, it can be difficult to use an ‘ensemble of opportunity’ to isolate the role 

of the thing you’re interested in 



Increased salinity in strong models inconsistent with observations 

North American cooling, and weak trends in Northern Hemisphere temperature are inconsistent 
with observations 

Forced AMOC strengthening in strong models not consistent with observations 
-> aerosol forcing, or the response to it, is too large in strong models  

Constraining simulated AMOC changes
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F��. 12. Shows the comparison of historical simulations with observations for key metrics. a) shows anomalies

for SPNA sea surface temperature (SST) relative to 1850-1899, for the MMM (black), strong (red) and weak

(blue) ensembles and observations (purple, ERSSTv5). 1f spread of the individual models ensemble-means is

shown by the black shading or red and dotted lines for MMM and strong and weak models respectively. Black

dot-dash line shows the 5–95% confidence interval of the MMM ensemble mean based on all the individual

members. b), c) and d) shows the same for SPNA sea surface salinity (SSS), North American surface air

temperature (SAT_NAm), and Northern Hemisphere surface temperature (ST_NH, e.g., SAT and SST combined

and averaged over 0–60�N). Observations are given by the ‘Anually binned Sea Surface Salinity’ data set from

Reverdin et al. (2019) for b), and BEST for c) and d). Note anomalies for SSS are computed over 1900-1950

due to shorter observations. Note also that panel c) shows the same time-series as shown in figure 7c, but now

for the 1850–1900 climatological period. e) shows the comparison of observed and simulated linear trends of

SPNA sea surface temperature (SST) computed over 1900-1985 for each member of each model (small dots show

each member, and large dot shows the ensemble mean for each model). Error bars show the 5–95% confidence

interval for the model ensemble means computed by using the individual model members. Horizontal purple

line shows the observed trend computed over the same time period. Triangles at the top of the plot shows where

observations are outside the 5–95% confidence interval. f)-h) shows the same as e) but now for SSS, SAT_NAm,

and TS_NH.
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SST is a weak 
constraint



Identify an empirical 
relationship between an 
observable variable and 
response to forcing, with 
credible physical 
mechanisms

Observed range of 
predictor can then be used 
to constrain simulated 
response by e.g. weighting 
or rejecting models outside 
observed range 

Emergent constraints
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or rejecting models outside 
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Simpson et al. (2021)

The variance in modeled Dy values, s2(Dy), can be partitioned
into a component that is explained by the EC (s2

EC) and the
remainder (s2

! ). The term s2
! then consists of components due

to internal variability (s2
IV) and other intermodel differences

that are not explained by the EC (s2
d); that is,

s2(Dy)5s2
EC 1s2

IV 1s2
d , (3)

where we have assumed «, d, and «IV are normally distributed
such that !;N (0, s2

! ), d;N (0, s2
d) and !IV ;N (0, s2

IV).
Combining the EC (1) with the observed value of x for the real
world [xE, with (.)E referring to Earth], the future change for
the real world (DyE) can be predicted via

Dy
E
5a1bx

E
1 !IV 1 d . (4)

The first two terms on the right refer to the component pre-
dicted by the EC, the third term represents the Dy that could
arise due to internal variability in one realization, and the final
term refers to the other contributions to the forced change in
the real world that are not explained by the EC.

Each component on the right of (4) is uncertain. With only a
finite number of models, with finite ensemble sizes, a and b are
not known exactly; also, xE may deviate from xE due to ob-
servational error and internal variability (Fig. 1b), «IV is an ir-
reducible uncertainty, and we may not know the role of other
forced responses in the real world, not described by the EC (d),
although this uncertainty has the potential to be reduced
through additional emergent constraints as they are discov-
ered. A further assumption is made that the process repre-
sentation within the models is close enough to that of the real

FIG. 1. Illustrative depiction of the EC method using synthetic data. (a) The relationship
between the projected change (Dy) and the present day climatology (x) for the models
depicted by the red points. Gray crosshairs depict the uncertainty on each red point by
the 61.96s range. Black vertical lines show four different measurements of xE while the
brown, green, and purple dashed lines show the best fitting linear regression line using the
OLS, TLS, and BHMmethods. (b) The distribution of possible true values of the real world
climatology xE given by PDFs that reflect the uncertainty due to internal variability, centered
on each observed value. (c) The probability distributions of the real world change along with
its mean (horizontal lines) and the 95% confidence interval (vertical ranges) for eachmethod.
This PDF considers the uncertainty in the best fitting regression line, the uncertainty in the
true real world value of x, and the potential influence of internal variability and other aspects
of the forced response not explained by the EC, using the method outlined in section 3.
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Past temperature trend with future temperature trend, and 
tropical cloud properties with future temperature trend

Emergent constraints
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Liang et al. (2022)

regression model using only cloud metrics. The stepwise
regression approach we use adds (or removes) the most (or
the least) important term in the linear regression model at
each step, based on the results of F tests (Figs. 2 and 3). For
each step that requires calculation of an F statistic (Figs.
3b–d), we account for the effects of model dependence by
using 20 as the effective number of independent models
(appendix C). Following the flowchart outlining the stepwise
procedure (Fig. 2), we first build a single variable linear model
with the MBLC metric because of all cloud metrics it produ-
ces the largest ESS value (Fig. 3a). In step 2, we build a two-
variable linear model adding the BCS metric because this is
the only cloud metric that results in a significant increase in
ESS relative to the MBLC metric regression model. As shown
in Fig. 3b, the lower 5th percentile of the F statistic range for
MBLC1BCS versus MBLC is greater than the critical F
value, which indicates a significant improvement to the linear
regression model using the MBLC and BCS metrics relative
to the MBLC metric only. For the other two choices,
MBLC1BCA versus MBLC and MBLC1LTMI versus
MBLC, the upper 95th percentile of the F statistic is smaller
than the critical F value, indicating that these two combina-
tions should not be considered further.

In step 3 of the procedure (Fig. 3c), we carry out a back-
ward selection step by removing the MBLC metric. Estimates
of the resulting F statistic are always significantly larger than
the critical F values (irrespective of internal variability or
changes in the effective number of degrees of freedom;
appendix C), indicating that the model with both MBLC and
BCS metrics has significantly larger ESS compared with the
linear model including BCS only. Therefore, the MBLC and
BCS metrics are retained in the linear model in step 3.

Three-variable linear models are considered in step 4.
There is no significant improvement in the fit of the combina-
tion MBLC1BCS1LTMI or MBLC1BCS1BCA relative to
MBLC1BCS. The upper 95th percentile of the F statistic in
MBLC1BCS1LTMI versus MBLC1BCS and the upper
90th percentile of the F statistic in MBLC1BCS1BCA versus
MBLC1BCS are smaller than the critical F value. While the
internal variability induced range of the MBLC1BCS1BCA
versus MBLC1BCS F statistic crosses the critical F value, the
median value is much smaller. Hence, all three-variable linear
models fail to increase the ESS significantly compared with
the model using MBLC and BCS metrics (Fig. 3d). Results
from a sensitivity test addressing potential model dependence
by varying the degrees of freedom to used to compute the F
statistic (appendix C; see Fig. S3) obtain the same set of step-
wise selected metrics. Therefore, we use the MBLC and BCS
metrics as constraints in our cloud metric based multiple diag-
nostic linear regression model to predict the GSAT changes
in 2081–2100 under SSP5–8.5. We also carried out the step-
wise selection on SSP1–2.6 (not shown) and get the same
selected metrics as for SSP5–8.5.

Since the GT metric has been widely applied as an observa-
tional constraint in previous studies, we repeat the previous anal-
ysis including the GT metric in our stepwise regression (Fig. S4).
The resulting regression model uses the MBLC and GT metrics
as constraints. A schematic of the cloud metrics entering our final

FIG. 5. Scatterplots showing relationships between selected con-
straints and projected warming: the (a) GT, (b) MBLC (x axis
reversed), and (c) BCS metrics. For illustration, one ensemble
member per model is used. The correlation coefficients and p val-
ues (relative to a null hypothesis of no correlation) are reported in
the bottom right corner of each panel. The vertical lines show the
observational values with means in solid and standard deviation in
shadow. The dashed lines in each panel show the 66% confidence
interval of the linear regression model [Eqs. (A3)–(A5)].
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2020; Watanabe et al. 2021). These considerations support
the use of the cloud metric rather than the GSAT trend for
constraining future warming.

We account for observational uncertainty and internal vari-
ability in our analysis by sampling from the estimated distri-
bution of observational uncertainty and sampling individual
members from initial condition ensembles when constructing
observationally constrained projections. Applying the multi-
ple observed cloud metrics as constraints to future GSAT
changes, we find that for both the SSP1–2.6 and SSP5–8.5 sce-
narios the projected warming uncertainty ranges are consider-
ably narrower relative to unconstrained simulations, with
little change in mean warming (Fig. 10; see also Fig. S7). We
also find that observationally constrained projections using
climatological cloud metrics have substantially reduced pre-
diction uncertainty associated with internal variability in his-
torical simulations relative to constrained projections using
the GSAT trend. Furthermore, our study provides evidence
for increasing the lower bound of the warming range of
CMIP6 projections, as well as lowering the upper bound. This
result differs from constrained projections based on the
GSAT trend alone, which exhibit a substantial decrease in the
upper bound and the mean of the projection range, but little
change in the lower bound (Brunner et al. 2020; Caldwell et al.
2018; Liang et al. 2020; Nijsse et al. 2020; Tokarska et al.
2020).

Our study provides a framework to apply multiple metrics
to constrain future warming that is also appropriate for con-
strained projections of equilibrium climate sensitivity. Our
results imply that the mean climate sensitivity of the CMIP6
ensemble may not in fact be biased high as some studies have
suggested, and that uncertainties in projected warming can be
considerably narrowed using physically reasonable cloud
constraints.

FIG. 10. PDFs of constrained and unconstrained GSAT changes
between 2081–2100 and 1995–2014 under SSP5–8.5. The curves
show the predicted distribution of GSAT changes constrained
using the GSAT trend (blue), constrained using cloud metrics
(green), and the unconstrained distribution (black). The shadows
around these PDF curves displays the contribution of internal vari-
ability and observational uncertainty, estimated by sampling one
ensemble member per model and sampling the observed quantities
within their uncertainty ranges (assuming Gaussian distributions
with means and standard deviations quoted in section 2b) 10000
times. The solid curves correspond to the mean of these 10000
samples. The upper horizontal bars display the respective
5%–95% projected ranges and means (numerical values are given
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These results are obtained assuming a value of 20 for the number
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TABLE 2. Best estimates and 5%–95% uncertainty ranges of
projected warming using SSP5–8.5 for GSAT changes between
1995–2014 and 2081–2100. When calculating constrained
uncertainty, we use a value of 20 as independent model amount
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Metrics

Projected warming (5%–95%; units: K)

SSP5–8.5 SSP1–2.6

Unconstrained 4.08 (2.34, 5.81) 1.30 (0.38, 2.04)
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MBLC1BCS 3.99 (2.84, 5.12) 1.15 (0.60, 1.70)
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Model diversity can: 

1. show us which processes are important for model performance

2. help us to understand the causes of biases in our own model

3. help us to understand the physical drivers of uncertainties in the 

simulated response to forcing

4. be used to constrain model estimates 

But, it can be difficult to use an ‘ensemble of opportunity’ to isolate the role 

of the thing you’re interested in 
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data were regridded to the resolution of the observational dataset using bilinear inter-141

polation. Both the model and observational data were smoothed using an area-weighted142

5-point smoothing algorithm before calculating the pattern correlations.143

3 Results144

3.1 Simulated global mean changes145

Figure 1. (a) Scaled global SO2 emissions used in the ensemble. OC and BC were similarly

scaled but are not shown. (b) Historical total e↵ective radiative forcing time series for each of

the aerosol scalings. (c) GMST time series for each of the simulations, colour coded by the scaling

factor applied to anthropogenic aerosol emissions. The thick lines represent the linear trend fit-

ted to each 5-member ensemble mean for the periods 1951-1980 and 1981-2010 respectively. (d)

September Arctic sea-ice extent in each ensemble member.

As expected, the evolution of GMST is highly sensitive to the scaling factor ap-146

plied to AA emissions, with low aerosol simulations warming more rapidly than simu-147

lations with high aerosol forcing (Figure 1c), starting to diverge around the 1880s. The148

evolution of GMST closely follows that of the radiative forcing time series. The period149

from the 1950s to the late 1970s is highly sensitive to the magnitude of aerosol forcing,150

which coincides with the rapid increase of SO2 emissions over Europe and North Amer-151

–6–



www.met.reading.ac.uk/~laura/home

manuscript submitted to Geophysical Research Letters

Figure 2. a-e) 31-year running trends are shown for each scaling factor, indexed to the central

year of the 31-year trend. Two observational datasets, Cowtan and Way (2014) and GISTEMP

v4 (Lenssen et al., 2019), are shown in black. The numbers in the top left-hand corner corre-

spond to the Euclidean distance between the individual ensemble members and the Cowtan and

Way (2014) observations, averaged over all ensemble members and the entire period. Panel f)

shows the simulated trends for each scaling over four di↵erent time periods. Crosses indicate the

ensemble mean trend while the horizontal bar corresponds to observations from Cowtan and Way

(2014).

patible with the observed historical record, a thorough constraint on historical aerosol184

forcing is not possible with this method due to the likely concurrent warm bias in the185

Transient Climate Response (TCR), a metric often used to characterise transient warm-186

ing in climate models. It is usually defined as the temperature at the time of CO2 dou-187

bling in a 1%CO2 simulation, sometimes referred to as the ‘true TCR’ in the literature188

–8–

• All scalings warm too quickly since 1981 - GC3.1 has a high climate sensitivity and large 
aerosol forcing Dittus et al., 2020

HadGEM3-GC3.1 ensemble with scaled aerosol emissions
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The effect of the uncertainty in aerosol radiative forcing on GMA and GMI is a reduction of 
2.99 % and 1.93 % respectively, when increasing the scaling across its range 

Magnitude of this impact is equivalent to that from a degree of global warming Shonk et al., 2020

HadGEM3-GC3.1 ensemble with scaled aerosol emissions
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